Блок питания источник питания – Компьютерный блок питания — Википедия

Автор: | 19.04.2020

Содержание

от простейшего до мощного с легкой регулировкой

Все мастера, занимающиеся ремонтом электронной аппаратуры, знают о важности наличия лабораторного блока питания, с помощью которого можно получать различные значения напряжения и тока для использования при зарядке устройств, питании, тестировании схем и т. д. В продаже имеется много разновидностей таких аппаратов, но опытным радиолюбителям вполне по силам изготовить лабораторный блок питания своими руками. Использовать для этого можно бывшие в употреблении детали и корпуса, дополнив их новыми элементами.

Самостоятельная сборка БП

Простое устройство

Самый простой блок питания состоит всего из нескольких элементов. Начинающим радиолюбителям будет несложно разработать и собрать эти легкие схемы. Главный принцип – создать выпрямительную схему для получения постоянного тока. При этом уровень напряжения на выходе меняться не будет, он зависит от коэффициента трансформации.

Часть схемы простейшего БП без трансформатора

Основные компоненты для схемы простого блока питания:

  1. Понижающий трансформатор;
  2. Выпрямительные диоды. Можно включить их по схеме моста и получить полноволновое выпрямление либо использовать полуволновое устройство с одним диодом;
  3. Конденсатор для сглаживания пульсаций. Выбирается электролитический тип емкостью 470-1000 мкФ;
  4. Проводники для монтажа схемы. Их поперечное сечение определяется величиной нагрузочного тока.

Для конструирования 12-вольтового БП нужен трансформатор, который понижал бы напряжение с 220 до 16 В, так как после выпрямителя напряжение немного уменьшается. Такие трансформаторы можно найти в бывших в употреблении компьютерных блоках питания или приобрести новые. Можно встретить рекомендации о самостоятельной перемотке трансформаторов, но на первых порах лучше обойтись без этого.

Диоды подойдут кремниевые. Для устройств небольших по мощности есть в продаже уже готовые мосты. Важно их правильно подсоединить.

Это основная часть схемы, пока еще не совсем готовая к использованию. Надо поставить дополнительно после диодного моста стабилитрон для получения лучшего выходного сигнала.

Схема БП со стабилитроном

Получившееся устройство является обычным блоком питания без дополнительных функций и способно поддерживать небольшие нагрузочные токи, до 1 А. При этом возрастание тока может повредить компоненты схемы.

Чтобы получить мощный блок питания, достаточно в этой же конструкции установить один или более усилительных каскадов на транзисторных элементах TIP2955.

Важно! Для обеспечения температурного режима схемы на мощных транзисторах необходимо предусмотреть охлаждение: радиаторное или вентиляционное.

Регулируемый блок питания

Блоки питания с регулировкой по напряжению помогут решать более сложные задачи. Имеющиеся в продаже устройства различаются по параметрам регулирования, показателям мощности и др. и подбираются с учетом планируемого использования.

Простой регулируемый блок питания собирается по примерной схеме, представленной на рисунке.

Схема регулируемого БП

Первая часть схемы с трансформатором, диодным мостом и сглаживающим конденсатором похожа на схему обычного БП без регулирования. В качестве трансформатора также можно использовать аппарат из старого блока питания, главное, чтобы он соответствовал выбранным параметрам по напряжению. Этот показатель для вторичной обмотки ограничивает регулирующий предел.

Как работает схема:

  1. Выпрямленное напряжение выходит к стабилитрону, который определяет максимальную величину U (можно взять на 15 В). Ограниченные параметры этих деталей по току требуют установки в схему транзисторного усилительного каскада;
  2. Резистор R2 является переменным. Меняя его сопротивление, можно получить разные величины выходного напряжения;
  3. Если регулировать также ток, то второй резистор устанавливается после транзисторного каскада. В данной схеме его нет.

Если требуется другой диапазон регулирования, надо установить трансформатор с соответствующими характеристиками, что потребует также включения другого стабилитрона и т. д. Для транзистора необходимо радиаторное охлаждение.

Измерительные приборы для простейшего регулируемого блока питания подойдут любые: аналоговые и цифровые.

Соорудив регулируемый блок питания своими руками, можно применять его для  устройств, рассчитанных на различные значения рабочего и зарядного напряжения.

Двухполярный блок питания

Устройство двуполярного блока питания более сложное. Заниматься его конструированием могут опытные электронщики. В отличие от однополярных, такие БП на выходе обеспечивают напряжение со знаком «плюс» и «минус», что необходимо при питании усилителей.

Схема двухполярного блока питания

Хотя изображенная на рисунке схема является простой, ее исполнение потребует определенных навыков и знаний:

  1. Потребуется трансформатор со вторичной обмоткой, разделенной на две половины;
  2. Одними из главных элементов служат интегральные транзисторные стабилизаторы: КР142ЕН12А – для прямого напряжения; КР142ЕН18А – для обратного;
  3. Для выпрямления напряжения используется диодный мост, можно его собрать на отдельных элементах или применить готовую сборку;
  4. Резисторы с переменным сопротивлением участвуют в регулировании напряжения;
  5. Для транзисторных элементов обязательно монтировать радиаторы охлаждения.

Двухполярный лабораторный блок питания потребует установки также контролирующих приборов. Сборка корпуса производится в зависимости от габаритов устройства.

Защита блока питания

Самый простой метод защиты БП – установка предохранителей с плавкими вставками. Есть предохранители с самостоятельным восстановлением, не требующие замены после перегорания (их ресурс ограничен). Но они не обеспечивают полноценной гарантии. Зачастую происходит повреждение транзистора до перегорания предохранителя. Радиолюбители разработали различные схемы с применением тиристоров и симисторов. Варианты можно найти в сети.

Советы по оформлению корпуса

Для изготовления кожуха устройства каждый мастер использует доступные ему способы. При достаточном везении можно найти готовое вместилище для прибора, но все равно придется менять конструкцию фронтальной стенки, чтобы поместить туда контролирующие приборы и регулирующие ручки.

Самодельный БП

Некоторые идеи для изготовления:

  1. Измерить габариты всех компонентов и вырезать стенки из алюминиевых листов. На фронтальной поверхности нанести разметку и проделать необходимые отверстия;
  2. Скрепить конструкцию уголком;
  3. Нижнее основание БП с мощными трансформаторами должно быть усилено;
  4. Для внешней обработки прогрунтовать поверхность, покрасить и закрепить лаком;
  5. Схемные компоненты надежно изолируются от внешних стенок во избежание появления напряжения на корпусе при пробое. Для этого возможно проклеить стенки изнутри изолирующим материалом: толстым картоном, пластиком и т. д.

Многие устройства, особенно большой мощности, требуют установки охлаждающего вентилятора. Его можно сделать с функционированием в постоянном режиме либо изготовить схему автоматического включения и выключения по достижении заданных параметров.

Схема реализуется установкой термодатчика и микросхемы, обеспечивающей управление. Чтобы охлаждение было эффективным, необходим свободный доступ воздуха. Значит, задняя панель, около которой монтируют кулер и радиаторы, должна иметь отверстия.

Важно! Во время сборки и ремонта электротехнических устройств надо помнить об опасности поражения электрическим током. Конденсаторы, находившиеся под напряжением, разряжать обязательно.

Собрать качественный и надежный лабораторный блок питания своими руками возможно, если использовать исправные компоненты, четко просчитывать их параметры, пользоваться проверенными схемами и необходимыми приборами.

Видео

Оцените статью:

elquanta.ru

Регулируемый блок питания своими руками

Мастер, описание устройства которого в первой части, задавшись целью сделать блок питания с регулировкой, не стал усложнять себе дело и просто использовал платы, которые лежали без дела. Второй вариант предполагает использование еще более распространенного материала — к обычному блоку была добавлена регулировка, пожалуй, это очень многообещающее по простоте решение при том, что нужные характеристики не будут потеряны и реализовать задумку можно своими руками даже не самому опытному радиолюбителю. В бонус еще два варианта совсем простых схем со всеми подробными объяснениями для начинающих. Итак, на ваш выбор 4 способа.

Блок питания из старой платы компьютера

Stalevik

Расскажем, как сделать регулируемый блок питания из ненужной платы компьютера. Мастер взял плату компьютера и выпилил блок, питающий оперативку.
Так он выглядит.

Определимся, какие детали нужно взять, какие нет, чтобы отрезать то, что нужно, чтобы на плате были все компоненты блока питания. Обычно импульсный блок для подачи тока на компьютер состоит из микросхемы, шим контроллера, ключевых транзисторов, выходного дросселя и выходного конденсатора, входного конденсатора. На плате еще и зачем-то присутствует входной дроссель. Его тоже оставил. Ключевые транзисторы — может быть два, три. Есть посадочное место по 3 транзистор, но в схеме не используется.

Сама микросхема шим контроллера может выглядеть так. Вот она под лупой.

Может выглядеть как квадратик с маленькими выводами со всех сторон. Это типичный шим контроллер на плате ноутбука.


Так выглядит блок питания импульсный на видеокарте.

Точно также выглядит блок питания для процессора. Видим шим контроллер и несколько каналов питания процессора. 3 транзистора в данном случае. Дроссель и конденсатор. Это один канал.
Три транзистора, дроссель, конденсатор — второй канал. 3 канал. И еще два канала для других целей.
Вы знаете как выглядит шим-контроллер, смотрите под лупой его маркировку, ищите в интернете datasheet, скачиваете pdf файл и смотрите схему, чтобы ничего не напутать.
На схеме видим шим-контроллер, но по краям обозначены, пронумерованы выводы.

Обозначаются транзисторы. Это дроссель. Это конденсатор выходной и конденсатор входной. Входное напряжение в диапазоне от 1,5 до 19 вольт, но напряжение питание шим-контроллера должно быть от 5 вольт до 12 вольт. То есть может получиться, что потребуется отдельный источник питания для питания шим-контроллера. Вся обвязка, резисторы и конденсаторы, не пугайтесь. Это не нужно знать. Всё есть на плате, вы не собираете шим-контроллер, а используете готовый. Нужно знать только 2 резистора — они задают выходное напряжение.

Резисторный делитель. Вся его суть в том, чтобы сигнал с выхода уменьшить примерно до 1 вольта и подать на вход шим-контроллера фидбэк — обратная связь. Если вкратце, то изменяя номинал резисторов, можем регулировать выходное напряжение. В показанном случае вместо резистора фидбэк мастер поставил подстроечный резистор на 10 килоом. Этого оказалось достаточным, чтобы регулировать выходное напряжение от 1 вольта до примерно 12 вольт. К сожалению, не на всех шим-контроллерах это возможно. Например, на шим контроллерах процессоров и видеокарт, чтобы была возможность настраивать напряжение, возможность разгона, выходное напряжение сдается программно по несколькоканальной шине. Менять выходное напряжение такого шим контроллера можно разве только перемычками.

Итак, зная как выглядит шим-контроллер, элементы, которые нужны, уже можем выпиливать блок питания. Но делать это нужно аккуратно, так как вокруг шим-контроллера есть дорожки, которые могут понадобиться. Например, можно видеть — дорожка идёт от базы транзистора к шим контроллеру. Её сложно было сохранить, пришлось аккуратно выпиливать плату.

Используя тестер в режиме прозвонки и ориентируясь на схему, припаял провода. Также пользуясь тестером, нашел 6 вывод шим-контроллера и от него прозвонил резисторы обратной связи. Резистор находился рфб, его выпаял и вместо него от выхода припаял подстроечный резистор на 10 килоом, чтобы регулировать выходное напряжение, также путем про звонки выяснил, что питание шим-контроллера напрямую связано со входной линией питания. Это значит, что не получиться подавать на вход больше 12 вольт, чтобы не сжечь шим-контроллер.

Посмотрим, как блок питания выглядит в работе

Припаял штекер для входного напряжения, индикатор напряжения и выходные провода. Подключаем внешнее питание 12 вольт. Загорается индикатор. Уже был настроен на напряжение 9,2 вольта. Попробуем регулировать блок питания отверткой.


Пришло время заценить, на что способен блок питания. Взял деревянный брусок и самодельный проволочный резистор из нихромовой проволоки. Его сопротивление низкое и вместе с щупами тестера составляет 1,7 Ом. Включаем мультиметр в режим амперметра, подключаем его последовательно к резистору. Смотрите, что происходит — резистор накаляется до красна, напряжение на выходе практически не меняется, а ток составляет около 4 ампер.


Раньше мастер уже делал похожие блоки питания. Один вырезан своими руками из платы ноутбука.

Это так называемое дежурное напряжение. Два источника на 3,3 вольта и 5 вольт. Сделал ему на 3d принтере корпус. Также можете посмотреть статью, где делал похожий регулируемый блок питания, тоже вырезал из платы ноутбука (https://electro-repair.livejournal.com/3645.html). Это тоже шим контроллер питания оперативной памяти.

Как сделать регулирующий БП из обычного, от принтера

Пойдет речь о блоке питания принтера canon, струйный. Они много у кого остаются без дела. Это по сути отдельное устройство, в принтере держится на защелке.
Его характеристики: 24 вольта, 0,7 ампера.

Понадобился блок питания для самодельной дрели. Он как раз подходит по мощности. Но есть один нюанс — если его так подключить, на выходе получим всего лишь 7 вольт. Тройной выход, разъёмчик и получим всего лишь 7 вольт. Как получить 24 вольта?
Как получить 24 вольта, не разбирая блок?
Ну самый простой — замкнуть плюс со средним выходом и получим 24 вольта.
Попробуем сделать. Подключаем блок питания в сеть 220. Берем прибор и пытаемся измерить. Подсоединим и видим на выходе 7 вольт.
У него центральный разъем не задействован. Если возьмем и подсоединим к двум одновременно, напряжение видим 24 вольта. Это самый простой способ сделать так, чтобы данный блок питания не разбирая, выдавал 24 вольта.

Необходим самодельный регулятор, чтобы в некоторых пределах можно было регулировать напряжение. От 10 вольт до максимума. Это сделать легко. Что для этого нужно? Для начала вскрыть сам блок питания. Он обычно проклеен. Как вскрыть его, чтобы не повредить корпус. Не надо ничего колупать, поддевать. Берем деревяшку помассивнее либо есть киянка резиновая. Кладем на твердую поверхность и по шву лупим. Клей отходит. Потом по всем сторонам простучали хорошенько. Чудесным образом клей отходит и все раскрывается. Внутри видим блок питания.


Достанем плату. Такие бп легко переделать на нужное напряжение и можно сделать также регулируемый. С обратной стороны, если перевернем, есть регулируемый стабилитрон tl431. С другой стороны увидим средний контакт идет на базу транзистора q51.

Если подаем напряжение, то данный транзистор открывается и на резистивном делителе появляется 2,5 вольта, которые нужно для работы стабилитрона. И на выходе появляется 24 вольта. Это самый простой вариант. Как его завести можно еще — это выбросить транзистор q51 и поставить перемычку вместо резистора r 57 и всё. Когда будем включать, всегда на выходе непрерывно 24 вольта.

Как сделать регулировку?

Можно изменить напряжение, сделать с него 12 вольт. Но в частности мастеру, это не нужно. Нужно сделать регулируемый. Как сделать? Данный транзистор выбрасываем и вместо резистор 57 на 38 килоома поставим регулируемый. Есть старый советский на 3,3 килоома. Можно поставить от 4,7 до 10, что есть. От данного резистора зависить только минимальное напряжение, до которого он сможет опускать его. 3,3 -сильно низко и не нужно. Двигатели планируется поставить на 24 вольта. И как раз от 10 вольт до 24 – нормально. Кому нужно другое напряжение, можно большого сопротивления подстроечный резистор.
Приступим, будем выпаивать. Берём паяльник, фен. Выпаял транзистор и резистор.

Подпаял переменный резистор и попробуем включить. Подал 220 вольт, видим 7 вольт на нашем приборе и начинаем вращать переменный резистор. Напряжение поднялось до 24 вольт и плавно-плавно вращаем, оно падает – 17-15-14 то есть снижается до 7 вольт. В частности установлено на 3,3 ком. И наша переделка оказалась вполне успешной. То есть для целей от 7 до 24 вольт вполне приемлемая регулировка напряжения.


Такой вариант получился. Поставил переменный резистор. Ручку и получился регулируемый блок питания — вполне удобный.

Видео канала «Технарь».

Такие блоки питания найти в Китае просто. Наткнулся на интересный магазин, который продает б/у блоки питания от разных принтеров, ноутбуков и нетбуков. Они разбирают и продают сами платы, полностью исправные на разные напряжения и токи. Самый большой плюс – это то, что они разбирают фирменную аппаратуру и все блоки питания качественные, с хорошими деталями, во всех есть фильтры.
Фотографии — разные блоки питания, стоят копейки, практически халява.

Простой блок с регулировкой

Простой вариант самодельного устройства для питания приборов с регулировкой. Схема популярная, она распространена в Интернете и показала свою эффективность. Но есть и ограничения, которые показаны на ролике вместе со всеми инструкциями по изготовлению регулированного блока питания.

Такие блоки питания найти в Китае просто. Наткнулся на интересный магазин, который продает б/у блоки питания от разных принтеров, ноутбуков и нетбуков. Они разбирают и продают сами платы, полностью исправные на разные напряжения и токи. Самый большой плюс – это то, что они разбирают фирменную аппаратуру и все блоки питания качественные, с хорошими деталями, во всех есть фильтры.
Фотографии — разные блоки питания, стоят копейки, практически халява.

Простой блок с регулировкой

Простой вариант самодельного устройства для питания приборов с регулировкой. Схема популярная, она распространена в Интернете и показала свою эффективность. Но есть и ограничения, которые показаны на ролике вместе со всеми инструкциями по изготовлению регулированного блока питания.


Самодельный регулированный блок на одном транзисторе

Какой можно сделать самому самый простой регулированный блок питания? Это получится сделать на микросхеме lm317. Она уже сама с собой представляет почти блок питания. На ней можно изготовить как регулируемый по напряжению блок питания, так и потоку. В этом видео уроке показано устройство с регулировкой напряжения. Мастер нашёл несложную схему. Входное напряжение максимальное 40 вольт. Выходное от 1,2 до 37 вольта. Максимальный выходной ток 1,5 ампер.

Скачать схему с платой.

Без теплоотвода, без радиатора максимальная мощность может быть всего 1 ватт. А с радиатором 10 ватт. Список радиодеталей.

Приступаем к сборке

Подключим на выход устройства электронную нагрузку. Посмотрим, насколько хорошо держит ток. Выставляем на минимум. 7,7 вольта, 30 миллиампер.

Всё регулируется. Выставим 3 вольта и добавим ток. На блоке питания выставим ограничения только побольше. Переводим тумблер в верхнее положение. Сейчас 0,5 ампера. Микросхема начал разогреваться. Без теплоотвода делать нечего. Нашёл какую-то пластину, ненадолго, но хватит. Попробуем еще раз. Есть просадка. Но блок работает. Регулировка напряжения идёт. Можем вставить этой схеме зачёт.

Видео Radioblogful. Видеоблог паяльщика.

izobreteniya.net

Блоки питания. Виды и работа. Особенности и применение

Вторичные источники питания являются неотъемлемой частью конструкции любого радиоэлектронного устройства. Они предназначены для того, чтобы преобразовывать переменное или постоянное напряжение электросети или аккумулятора в постоянное или переменное напряжение, требуемое для работы устройства, это блоки питания.

Источники питания бывают не только включены в схему какого-либо устройства, но и могут выполнятся в виде отдельного блока и даже занимать целые цеха электроснабжения.

К блокам питания предъявляется несколько требований. Среди них: высокий КПД, высокое качество выходного напряжения, наличие защит, совместимость с сетью, небольшие размеры и масса и др.

Среди задач блока питания могут числится:

  • Передача электрической мощности с минимумом потерь;
  • Трансформация одного вида напряжения в другое;
  • Формирование частоты отличной от частоты тока источника;
  • Изменение величины напряжения;
  • Стабилизация. Блок питания должен на выходе выдавать стабильный ток и напряжение. Эти параметры не должны превышать или быть ниже определенного предела;
  • Защита от короткого замыкания и других неисправностей в источнике питания, которые могут привести к поломке устройства, которое обеспечивает блок питания;
  • Гальваническая развязка. Метод защиты от протекания выравнивающих и других токов. Такие токи могут приводить к поломкам оборудования и поражать людей.

Но зачастую перед блоками питания в бытовых приборах стоят только две задачи – преобразовывать переменное электрическое напряжение в постоянное и преобразовывать частоту тока электросети.

Среди блоков питания наиболее распространены два типа. Они различаются по конструкции. Это линейные (трансформаторные) и импульсные блоки питания.

Линейные блоки питания

Изначально источники питания изготавливались только в таком виде. Напряжение в них преобразовывается силовым трансформатором. Трансформатор понижает амплитуду синусоидальной гармоники, которая затем выпрямляется диодным мостом (бывают схемы с одним диодом). Диоды преобразуют ток в пульсирующий. А далее пульсирующий ток сглаживается с помощью фильтра на конденсаторе. В конце ток стабилизируется с помощью триода.

Чтобы просто понять, что происходит, представьте себе синусоиду – именно так выглядит форма напряжения, поступающего в наш блок питания. Трансформатор как бы сплющивает эту синусоиду. Диодный мост горизонтально рубит ее пополам и переворачивает нижнюю часть синусоиды наверх. Уже получается постоянное, но все еще пульсирующее напряжение. Фильтр конденсатора доделывает работу и «прижимает» эту синусоиду до такой степени, что получается почти прямая линия, а это и есть постоянный ток. Примерно так, возможно, чересчур просто и грубо, можно описать работу линейного блока питания.

Плюсы и минусы линейных БП

К преимуществам относится простота устройства, его надежность и отсутствие высокочастотных помех в отличие от импульсных аналогов.

К недостаткам можно отнести большой вес и размер, увеличивающиеся пропорционально мощности устройства. Также триоды, идущие в конце схемы и стабилизирующие напряжение снижают КПД устройства. Чем стабильнее напряжение, тем большие его потери будут на выходе.

Импульсные блоки питания

Импульсные блоки питания такой конструкции появились в 60-ых годах прошлого века. Они работают по принципу инвертора. То есть, не только преобразуют постоянное напряжение в переменное, но и меняют его величину. Напряжение из электросети попадая в прибор выпрямляется входным выпрямителем. Затем амплитуда сглаживается входными конденсаторами. Получаются высокочастотные импульсы прямоугольной формы с определенным повторением и длительностью импульса.

Дальнейший путь импульсов зависит от конструкции блока питания:

  • В блоках с гальванической развязкой импульс попадает в трансформатор.
  • В БП без развязки импульс идет сразу на выходной фильтр, который срезает нижние частоты.
Импульсный БП с гальванической развязкой

Высокочастотные импульсы из конденсаторов попадают в трансформатор, который отделяет одну электрическую цепь от другой. В этом и заключается суть гальванической развязки. Благодаря высокой частотности сигнала эффективность трансформатора повышается. Это позволяет снизить в импульсных БП массу трансформатора и его размеры, а, следовательно, и всего устройства. В импульсных трансформаторах в качестве сердечника используются ферромагнитные соединения. Это также позволяет снизить габариты устройства.

Конструкция такого типа предполагает преобразование тока в три этапа:

  1. Широтно-импульсный модулятор;
  2. Транзисторный каскад;
  3. Импульсный трансформатор.
Что такое широтно-импульсный модулятор

По-другому этот преобразователь называется ШИМ-контроллер. Его задача состоит в том, чтобы изменять время, в течении которого будет подаваться импульс прямоугольной формы. Модулятор меняет время, в течении которого импульс остается включенным. Он меняет время, в которое импульс не подается. Но частота подачи при этом остается одинаковой.

Как стабилизируется напряжение в импульсных БП

Во всех импульсных БП реализован вид обратной связи, при котором с помощью части выходного напряжения компенсируется влияние входного напряжения на систему. Это позволяет стабилизировать случайные входные и выходные изменения напряжения

В системах с гальванической развязкой для создания отрицательной обратной связи применяются оптроны. В БП без развязки обратная связь реализована делителем напряжения.

Плюсы и минусы импульсных БП

Из плюсов можно выделить меньшую массу и размеры. Высокий КПД, за счет снижения потерь, связанных с процессами перехода в электрических цепях. Меньшая цена в сравнении с линейными БП. Возможность использования одних и тех же БП в разных странах мира, где параметры электросети отличаются между собой. Наличие защиты от короткого замыкания.

Недостатками импульсных БП является их невозможность работы на слишком высоких или слишком низких нагрузках. Не подходят для отдельных видов точных устройств, поскольку создают радиопомехи.

Применение

Линейные блоки питания активно вытесняются их импульсными аналогами. Сейчас линейные БП можно встретить в стиральных машинах, СВЧ-печах, системах отопления.

Импульсные БП применяются почти везде: в компьютерной технике и телевизорах, в медицинской технике, в большинстве бытовых приборов, в оргтехнике.

Похожие темы:

 

electrosam.ru

Надежный лабораторный блок питания


У меня есть регулируемый блок питания. Регулируется только напряжение, соответственно регулировка тока отсутствует. Для некоторых целей его хватает. Решил собрать блок с регулировкой тока и напряжения. Лабораторный блок питания, далее ЛБП, очень нужная вещь.
Схема ЛБП очень простая, так как использовать буду модуль DC-DC преобразователя из Китая.

Характеристики


Основные характеристики модуля:
  • Входное напряжение 5 — 40 Вольт;
  • Выходное напряжение 1.2 — 35 Вольт;
  • Выходной ток (мах) 9 Ампер, желательно установить кулер.

Схема блока питания


Как уже говорил, схема простая. Сетевое напряжение поступает на трансформатор. Имеется сетевой выключатель и предохранитель. Напряжение понижается трансформатором. Верхняя честь схемы силовая. Переменное напряжение поступает на диодный мост и сглаживающий конденсатор. Далее поступает на DC-DC преобразователь. С преобразователя напряжение поступает на выходные клеммы. Минус схемы разрывается приборчиком. Для удобства, регулировочные резисторы вынесены с платы.
Нижняя предназначена для питания вольтамперметра. Трансформатор имеет отдельную обмотку. Как и с силовой обмоткой, переменное напряжение поступает на диодный мост и фильтрующий конденсатор. Далее установил линейный стабилизатор на 5 Вольт.

Компоненты


Со схемой разобрались. Теперь переходим к компонентам.
Корпусом ЛБП будет служить старый корпус от регулятора паяльника. Регулятор паяльника еще времен СССР. Очень добротный.

Передняя панель будет из композитного пластика. Состоит пластик из двух пластин алюминия и пластика между ним. С одной стороны, он белый, с второй черный. Черная сторона будет лицевой.

Понижающий трансформатор от старого оборудования, уже не помню какого. Его пришлось слегка доработать. Сделал отвод на 22 Вольта, полная обмотка на 27 Вольт. Если оставить, то после диодного моста напряжение более 30 Вольт. Это много для стабилизатора 7805, установленного на [leech=http://]DC-DC преобразователе[/leech]. Он питает операционный усилитель схемы. Хоть и заявлено 40 Вольт, при учете максимального для 7805 в 30 Вольт.

Понижающий преобразователь постоянного тока.

Вольтамперметр на 3 сегмента. Для более точного отображения выходных параметров, нужно применить на 4-е сегмента. У меня какой был, такой и применил.

Клеммы времен СССР. Крепкие и надежные.

Конденсатор на 4700 мкф*63 Вольта. Из расчета 1000 мкф на 1 Ампер. На модуле установлены еще 2*470 мкф.

Диодный мост можно взять и единый, но у меня остался от старого проекта. Собран на 4-х диодах Д242.

Изготовление


На дне корпуса размечаем, сверлим отверстия под: трансформатор, диодный мост, модуль. Все спаиваем соответственно схемы. С модуля выпаял два подстроечных резистора. Вместо них припаял провода. На токовый 3 провода, на напряжение два.

Питать Вольтамперметр буду через линейный стабилизатор на 5 Вольт. Диодный мост КЦ402 и конденсатор небольшой емкости.

На задней панели делаю разметку под сетевой разъем и предохранитель. Все аккуратно выпиливаю и устанавливаю.

На передней панели размечаю и вырезаю все отверстия. Тут будут: выходные клеммы, сетевой выключатель, резисторы тока и напряжения, Вольтамперметр.

Распаял все элементы устанавливаемые изнутри. Сетевой выключатель коммутирует оба сетевых провода. Первоначально хотел применить другой.

Устанавливаем все элементы передней панели. Плюсовая клемма отмечена красной краской. Ручки резисторов разного цвета. Красная по цвету отображения Вольт. Желтая по току. Пока что не подписывал где ток и напряжение. Позже буду менять резисторы на многооборотные, ручки возможно тоже поменяю.

Верхнюю крышку покрасил. Между передней панелью и крышкой была слишком большая щель, ее закрыл небольшим уголком. При проверке блок выдал 9 Ампер на коротком, при 28 Вольтах, что составило чуть больше 250 Ватт.

Такой вот Лабораторный Блок Питания получился. Им можно как питать разного рода устройства, также заряжать аккумуляторы. Первоначально хотел применить импульсный источник на 24 Вольта, но попался трансформатор нужных габаритов. Так же, стараюсь собирать устройство из того что есть. Всем спасибо за внимание!

Смотрите видео


sdelaysam-svoimirukami.ru

схемы, разновидности, описание и рекомендации по изготовлению своими руками

Лабораторный блок питания необходим каждому радиолюбителю. Благодаря этому устройству возможно получать любые напряжения постоянного тока для питания того или иного изделия, а также производить подбор соответствующих параметров питания, тестовую проверку изделия или определенного узла цепи. Давайте ознакомимся с вариантами изготовления лабораторных блоков питания, которые являются самодельными вариантами.

Содержание материала

Схемы блоков питания

Заводские источники питания не каждый радиолюбитель может себе позволить, да это им и не нужно. Ведь нормальный источник питания имеет высокую цену, а покупать обыкновенный не имеет смысла, потому что зачастую они выходят из строя. Поэтому радиолюбители нашли выход — разработка бп самостоятельно, причем широкое распространение получили регулируемые модели (универсальный блок питания с регулировкой напряжения), в которых нет необходимости использовать трансформатор питания с множеством выводов II обмотки, можно регулировать напряжение. В интернете можно найти схемы лабораторных блоков питания своими руками в большом количестве.

Существуют много разновидностей, но среди всех можно выделить те, которые получили широкое применение.

Также рекомендуем прочитать:

Простой лабораторный

Состав источника питания:

  1. Понижающий трансформатор, выпрямитель и фильтр. Мощность самого блока питания зависит прямо пропорционально от параметров трансформатора.
  2. Регулятор напряжения, который может быть выполнен на транзисторе или стабилитроне.

Схема 1 — Простой источник питания с регулируемым диапазоном напряжений

Перечень радиодеталей, которые необходимы для изготовления бп:

  1. Трансформатор T1 — источник питания для всей схемы (параметры выбираются согласно применению БП, на выходе должно быть не более 36 — 40 В, напряжение уменьшается при выпрямлении диодным мостом). Необходимо получить на выходе диодного моста не более 30 В.
  2. Предохранитель (ставится на I обмотку трансформатора для защиты от КЗ 5а).
  3. Выпрямитель (можно диодные мосты или спаять его самому), диоды выбираются исходя из обратного напряжения (напряжения пробоя) диода.
  4. Стабилитрон лм317 (lm317) или lm338t позволяет стабилизировать напряжение.
  5. Конденсаторы C1 (2200mkF), C2 (0,1mkF), C3 (1mkF).
  6. R1 = 4.7 k (переменный), R2 = 200 .
  7. А также можно еще и подключить светодиод на выход бп для индикации его работоспособности.

Важно использовать вольтметр для измерений и наладки бп, а можно подключить его в схему бп, для того чтобы точно выставлять напряжения питания.

После подбора соответствующих элементов схемы, а также подготовки рабочего места и инструмента приступаем к работе.

Изготовление бп разбить на этапы:

  1. Изготовление платы, на которую монтируются радиодетали (рис. 1). В интернете есть много способов изготовления печатных плат.
  2. Впаивание элементов согласно схеме.
  3. Подключаем плату к трансформатору.
  4. Подготовка и монтаж в корпус.

Рисунок 1 — Пример печатной платы

Двухполярный источник питания

За основу взять распространенную схему бп. Она обеспечивает выдачу напряжения диапазоном от 0 до 30 В, с ограничением по току 0,002−3А. Схема бп однополярная, так что для обеспечения двухполярности — соберем две одинаковые. Это и будет двухполярный лабораторный блок питания своими руками .

Схема 2 — Двуполярный блок питания своими руками

Транзистор Q4 (2N3055) не подходит из-за частого выхода из строя при токах КЗ, и ток в 3А слишком велик! Надёжнее поменять его на КТ819 или КТ827А (транзистор составной и транзистор Q2 можно выкинуть из схемы, а также резистор R16 подкинуть на место базы Q2. Транзистор и резистор удалять нет необходимости. Меняем транзистор Q2 на BD139 (КТ815), теперь греться не будет, также надо заменить R13 = 33кОм. Выпрямительные диоды должны иметь запас по мощности. В исходной схеме диоды 3А заменяем на 5А (можно и больше).

Перечень деталей бп:

Резисторы:

R1=2,2 к 2Вт; R2=82 Om 0,25Вт; R3=220 Ом 0,25Вт; R4=4,7 к 0,25Вт; R5, R6, R20, R21=10 к 0,25Вт; R13=10k; R7 = 0,47 Om 5Вт; R8, R11=27 к ¼W; R9, R19=2,2 к ¼W; R10=270 кОм ¼W R12, R18=56кОм ¼W R14=1,5 к ¼W R15, R16=1 к ¼W R17=33 Ом ¼W R22=3,9 к ¼W RV1=100k.

Триммер: P1, P2 =10k — линейный потенциометр.

Конденсаторы: C1=3300 mF /50V электролитический C2, C3 (47mkF/50V), C4 (100н), полиэстр C5 (200н), полиэстр C6 (100п), C7 (10mF/50V), C8 (330п), C9 (100п).

Диоды: D1, D2, D3, D4 (1N5402,3,4 диод 2A), D5, D6 (1N4148), D7, D8 (5,6V), зенеревский D9, D10 (1N4148), D11 (1N4001 диод 1A), Q1 (BC548).

Транзисторы: (BC547), Q2 (2N2219) (допустимая замена BD139), Q3 (BC557 или BC327), Q4 (2N3055 или КТ819 или КТ 827А). Убрать Q2, R16.

ОУ(TL081) D12 + LED- диод.

Перечень деталей индикации, в штуках:

Резисторы: триммеры (10K — 2 шт., 3K3 — 3 шт.), 100кОм ¼W, 51кОм ¼W — 3 шт., 6,8кОм ¼W, 5,1кОм ¼W — 2 шт., 1,5кОм ¼W, 200 Ом ¼W — 2 шт., 100 Ом ¼W, 56 Ом ¼W.

Диоды:1N4148 — 3 шт., 1N4001 (мост) — 4 шт.

Стабилизатор напряжения: 7805 — 2 шт.

Конденсаторы: 1000 мкF/16V, C4 (100н).

Операционный усилитель(МСР502) — 2, микроконтроллер (ATMega8 LCD 2/16 или контроллер HD44780).

Рисунок 2 — Печатная плата

В качестве измерителя использована схема на микроконтроллере Atmega8, благодаря которой можно использовать 2 вольтметра и 2 амперметра на один дисплей. Корпус — корпус с ИБП. Для монтажа силовых транзисторов на радиаторы необходимо использовать термопасту КТП-8 или другой аналог.

После сборки необходимо еще раз визуально все проверить, в том числе даже тестером на предмет короткого замыкания (обычный Омметр или мультиметр со звуковым сигналом).

Для лучшей вентиляции бп, можно разместить в корпусе кулер с импульсного бп персонального компьютера.

После монтажа и завершения всей работы приступаем к перепрошивке микроконтроллера (в интернете такой информации много). Однако, если нет опыта в этих делах, то нужно предоставить это специалисту, в противном случае, можно его испортить, но это редкость, ведь любой неверно прошитый контроллер можно восстановить с помощью специальной аппаратуры.

Необходимо отметить, что трансформатор используется с двумя вторичными обмотками (со средним выводом не подойдёт), если такового нет, то необходимо его сделать. Стабилизатор напряжения 7805 нагревается и поэтому садим его на радиатор. Диоды тоже по возможности необходимо использовать с радиатором.

Схема 3 — Доработанный вариант двуполярного лабораторного бп

Лабораторный импульсный бп

У каждого человека есть бп АТХ (бп персонального стационарного компьютера). Кое-что придётся докупить, но это сильно не ударит по кошельку радиолюбителя. За основу желательно брать формфактор АТХ с выходной мощностью 350 Вт.

Схема 4 — Импульсный бп на основе Power Master FA-5 мощностью 300 Вт

Порядок действий:

  1. Удаляем диод D29.
  2. Удаляем перемычку J13.
  3. Перемычку PS ON на землю убираем.
  4. Включаем бп только на короткое время, ведь импульсные бп нельзя подключать без нагрузки.
  5. Выходные электролиты, рассчитанные на 16 В, немного нагреются. Провода убрать, они мешают, кроме GND и +12 В.
  6. Удалим 3.3 В: цепь R32, Q5, R35, R34, IC2, C22, C21 .
  7. Удалить 5В: HS2, C17, C18, R28, L5 Удалить -12 В -5В: цепь D13-D16, D17, C20, R30, C19, R29.
  8. Заменяем С11, С12 (С11 — 1000mF, C12 — 470mF) С16 (на 3300mF х 35V на 2200mF x 35V обязательно!) и R27 заменить более мощным (2Вт) и 360−560 Ом.
  9. Удаляем: R49−51, R52−54, С26, J11 R38 перерубить. R37 перекусываем.
  10. Изолируем ноги (15 и 16) микросхемы.
  11. Подпаиваем шлейф на плату регулятора в точке согласно схеме. Жилу (шлейф 7 -питание регулятора) запитываем +17 В.

Схема 5 — Окончательный вариант

Рекомендации по улучшению надежности

Заменить С1 и С2 на 680 мкФ 200 В. Плюс неплохо дроссель L3 переделать, использовав обмотки 5 В, соединив их последовательно или намотать его заново проводом 3−4мм 2. Также необходимо запитать вентилятор для охлаждения бп, который питается 12 В, крен12а (крен8б), кр142ен22а или 7812 импортный аналог) .

Для регулятора напряжения необходимы амперметр и вольтметр, при этом необходимо ограничить ток, согласно максимальному значению показаний приборов.

/media/dima/Windows 7 Ultim x64 7DB by OVG/½/reg.gif

Схема 6 — Регулятор

Регулировка ограничения тока достигается путем замены R7 и R8 на переменный 10кОм, также как R9. Сопротивление R5 = 5,6кΩ, шунт амперметра 50mΩ. Рассчитывается по формуле R5=280/Rш.

Важное правило — GND бп и выходной цепи не соприкасаются.

Таким образом, каждый радиолюбитель может собрать себе собственный бп любой сложности — простой (линейный), и заканчивая более сложным вариантом. Выбор соответствующей модели самодельного бп зависит от задач, на которые ориентируется конкретный радиолюбитель. Как правило, более сложные бп обладают защитой от короткого замыкания, способны при регулировке выдавать 0 В. Начинающему радиолюбителю стоит начать с простого варианта, так как, если взяться за более сложный вариант, то будут разочарования. Опыт приходит постепенно.

101sovet.guru

Лабораторный блок питания | Все своими руками

Пожалуйста уделите минутку после прочтения статьи и пройдите опрос, мне важно знать ваше мнение по поводу рекламы на сайте. Спасибо, с ув. Эдуард

Для питания различных схем нужны разные блоки питания с разными напряжениями и токами, для таких целей в мастерской необходим регулируемый блок питания, то есть лабораторный блок питания. Цены на такие устройства довольно внушительны и поэтому придется собирать лабораторный блок питания своими руками. Из того что у меня есть в закромах получится неплохой прибор с выходом до 18В и током до 2.5А, для индикации подойдет только что пришедший с Китая цифровой вольтметр, но обо всем по порядку.

Во первых максимальные выходные параметры были выбраны в связи с имеющимся свободным трансформатором от стерео колонок 2*17В 2А. обмотки подключены параллельно. После диодного моста с конденсаторами напряжение подрастет примерно до 24В. Надо учитывать, что напряжение должно быть с запасом. Падение на транзисторах несколько вольт плюс под нагрузкой еще просядет на несколько вольт, чистыми останется 19В поэтому 18В это стабильный максимум, что можно выжать. Нагрузка в 2,5А выбрана так, что бы сильно не нагружать обмотки трансформатора, в таком режиме трансформатор будет себя лучше чувствовать, потому что нагружен будет на 70-80%. Чем питать разобрался, теперь что что питать

Теперь пора выбрать схему для лабораторного блока питания. Схема была выбрана, собрана и опробована, это простой и доступный лабораторный блок питания (ПИДБП) V14.Схема была взята с форума Паяльника и немного переделана под свои выходные напряжения и токи

На DA1.3 собран индикатор перегрузки по току. Когда идет ограничение по току, этот индикатор указывает об этом
Для измерения тока нагрузки на DA1.4 собран усилитель напряжения пересчитанный на усиление в  5 раз. Когда нагрузка максимальна на резисторе R20 падение 0,5В, это напряжение усиливается и на выходе ОУ напряжение, равное по значению току потребления.

Ну и на первых двух компараторах собрано сердце схемы. Это стабилизатор тока управляющий стабилизатором напряжения. Я собирал нечто похожее, только в схеме управление током и напряжением было независимо. Подробно описывать как работает последовательное включение стабилизаторов не буду, можете почитать о параллельном в статье простое зарядное устройство своими руками, принцип работы схож.
В схеме были пересчитаны R12R14 для выходного напряжения в 18В, а R11 для регулировки напряжения был заменен на 5к. R20 пересчитан на ток 2,5А, при максимальном токе на R20 должно быть падение 0,5В. R20 рассчитывается по простой формуле из закона Ома R20=0.5(В)\Iмакс(А)

Что бы схемку сделать немного практичней добавил схемку защиты от короткого замыкания и переполюсовки. Эта схема хорошо себя зарекомендовала и леплю её куда попало))
Короче определился, что где буду использовать. Собрал все компоненты в кучу, развел печатную плату и все распаял

Как видно выходные транзисторы использовал КТ803А в параллельном включении. Общая рассеиваемая мощность 120Вт, максимальный ток 20А напряжение пробоя 60В. Оба транзисторы выведены проводами на общий радиатор за пределы корпуса. Кстати корпус использовал от старой пластиковой музыкальной колонки



Печатная плата готова, корпус есть. транзисторы на радиаторе. Пришло время окончательно определиться какие задачи будут выполняться лабораторным блоком питания и развести переднюю панель. Панель буду рисовать в SPL6.

На панеле размещу вольтметр, регулятор напряжения и тока.
Переключатель измерение вольт и ампер.
Два индикатора перегрузка и защита от КЗ
Переключатель между выходом с диодного моста и выходом ЛБП
Переключатель между ЛБП и зарядным. Минусовой выход либо с ЛБП либо с защиты от переполюсовки и кз
Теперь зная что где будет, можно сложить общую схему лабораторного блока питания и раскидывать косы проводов от платы к передней панеле. Вот что вышло


  Думаю пора собирать все в корпус
Вот фото платы собранной окончательно

А вот так все выглядит в корпусе.

После сборки всего в корпус можно попробовать включить лабораторный питальник в розетку. На выходе 18,5В
Первое включение лабораторного блока питания под нагрузкой 50% в качестве нагрузки двигатель от шуруповерта 12В. Кстати по индикатору перегрузка видно, что блок питания в режиме ограничения тока. На индикаторе ток потребления 1,28А

Вот такой лабораторный блок питания у меня получился

В качестве индикатора использовал вольтметр  из Китая, предварительно его переделав. Вольтметр указывал тоже напряжения от которого питался, я решил разделить эти каналы, что бы была возможность измерять от 0В до 20В. Я убрал резистор соединяющий контакты питания и измерения напряжения, он помечен красным на фото. Запитал индикатор от опорного напряжения схемы 12В

Такой вольтметр можно заказать на AliExpress. вот ссылка

Если нужны результаты испытаний этого блока, пожалуйста напишите в комментариях.

С ув. Эдуард

Поддержите новые проекты монеткой, пролистайте страницу чуть ниже, будьте любезны.

Loading…

Полезные материалы по этой теме:

rustaste.ru

Импульсный блок питания: схемы, сборка, принцип действия

Содержание:

  1. Работа аналоговых блоков питания
  2. Принцип действия импульсных устройств
  3. Работа инвертора в блоке питания
  4. Плюсы и минусы импульсных блоков
  5. Самостоятельная сборка импульсного блока питания
  6. Видео

Современные электронные устройства рассчитаны на работу от слабых токов от 1-2 до 6-12 вольт. Ранее такое напряжение достигалось путем использования аналоговых или трансформаторных блоков питания, которые в настоящее время почти не используются. В первую очередь это связано с большими габаритными размерами, нередко превышающими размеры подключенного прибора. На смену этим источникам пришел импульсный блок питания, схема которого обеспечивает стабильную и надежную работу электронных приборов. Для того чтобы сделать правильный выбор, необходимо хорошо представлять себе конструктивные особенности и принцип действия этих устройств.

Работа аналоговых блоков питания

Предшественниками импульсных устройств долгое время были аналоговые блоки питания, оборудованные понижающим трансформатором. На рисунке упрощенной структурной схемы хорошо видно, что этот прибор установлен на самом входе. С помощью понижающего трансформатора амплитуда питающего напряжения преобразуется из сетевых 220 В до нужного значения.

После этого синусоидальный ток попадает в выпрямитель, где преобразуется в импульсный. Данная процедура осуществляется с помощью полупроводниковых выпрямительных элементов – диодов, подключенных по схеме диодного моста.

Следующим элементом является блок, состоящий из сглаживающего фильтра и стабилизатора. Сглаживание напряжения осуществляется конденсатором, имеющим соответствующую расчетную емкость. После выполняется стабилизация, чтобы избежать провалов напряжения в случае увеличения нагрузки. Данная схема приведена в очень упрощенном виде, поскольку в блоках питания 12В этого типа существуют дополнительные элементы в виде входного фильтра и защитных цепей, не оказывающих существенного влияния на общую функциональность устройства.

Основным ограничением использования трансформаторных блоков является их чрезмерная масса и габаритные размеры. Например, понижающий трансформатор 220/12 с номинальной мощностью 250 Вт весит примерно 4 кг, а его длина, ширина и высота составляют 125х124х89 мм. Данный фактор делает невозможным использование таких приборов в современных миниатюрных устройствах.

Принцип действия импульсных устройств

Импульсные устройства – ИИП работают совершенно по другому принципу, существенно отличающемуся от аналоговых блоков питания. Это подтверждают и структурные схемы, в которой отсутствует входной понижающий трансформатор.

Принцип работы такого источника питания осуществляется на практике в следующей последовательности:

  • Изначально питание попадает в сетевой фильтр, сводящий до минимума входящие и исходящие сетевые помехи, образующиеся в результате рабочих процессов.
  • Далее начинает действовать блок, в котором синусоидальное напряжение преобразуется в импульсное. Вместе с ним начинается работа сглаживающего фильтра.
  • После этого в рабочий процесс включается инвертор, формирующий высокочастотные прямоугольные сигналы. Для обратной связи с инвертором используется блок управления.
  • Импульсный трансформатор – ИТ обеспечивает автоматический генераторный режим, подачу напряжения на отдельные участки цепей, защиту, управление контроллером и нагрузку. Кроме того, ИТ обеспечивает гальваническую развязку между цепями с высоким и низким напряжением. Для его сердечника использованы ферримагнитные материалы, обеспечивающие надежную передачу высокочастотных сигналов в диапазоне от 20 до 100 кГц.
  • На следующем этапе начинается работа выходного выпрямителя, работающего с напряжением высокой частоты. Его конструкция выполнена на основе быстродействующих полупроводниковых элементов – диодов Шотке.
  • По завершении процесса напряжение сглаживается на выходном фильтре, после чего оно уже поступает на нагрузку.

Работа инвертора в блоке питания

Инвертор является основным элементом импульсного блока. Его основная функция заключается в высокочастотной модуляции, которая может быть выполнена частотно-импульсным, фазоимпульсным и широтно-импульсным (ШИМ) способами.

В практической работе схема импульсного блока питания чаще всего использует последний вариант, отличающийся простым исполнением и постоянной коммуникационной частотой.

Работа этого контроллера выполняется по следующей схеме, приведенной на рисунке выше:

  • С помощью генератора, задающего частоты, происходит формирование прямоугольных сигналов с частотой, соответствующей опорному значению. Эти сигналы служат базой для формирования Uп, имеющего пилообразную форму и поступающего на Кшим, то есть, на вход компаратора.
  • Ко второму входу компаратора выполняется подводка сигнала Uус, приходящего с регулирующего усилителя. В результате, сигнал, сформированный усилителем будет представлять собой пропорциональную разность опорного напряжения (Uп) и регулирующего сигнала от цепи обратной связи (Uрс).
  • С помощью этого способа образуется замкнутая цепь, обеспечивающая управление напряжением на выходе, образуя тем самым своеобразный линейно-дискретный функциональный узел. На выходе происходит формирование импульсов, продолжительность которых зависит от разницы между опорным и управляющим сигналами. На основе данного узла возникает напряжение, позволяющее управлять ключевым транзистором инвертора.

Стабилизация выходного напряжения осуществляется путем контроля над его уровнем. Если оно изменяется, то соответственно происходит и пропорциональное изменение напряжения Uрс – регулирующего сигнала. За счет этого уменьшается или увеличивается продолжительность временного промежутка между импульсами. В результате мощность вторичной цепи изменяется и выходное напряжение стабилизируется. Гальваническая развязка, которой оборудуются все импульсные блоки питания, обеспечивает безопасность между питающей сетью и обратной связью и выполняется с помощью оптронов.

Плюсы и минусы импульсных блоков

По сравнению с аналоговыми преобразователями такой же мощности, импульсные блоки обладают несомненными преимуществами:

  • Незначительная масса и габариты, поскольку в конструкции отсутствует понижающий трансформатор низкой частоты и управляющие элементы, требующие больших радиаторов для отвода тепла. Преобразование высокочастотных сигналов привело к снижению емкости конденсаторов, установленных в фильтрах и их габаритных размеров.
  • У них значительно выше коэффициент полезного действия, так как большинство потерь связано лишь с переходными процессами. В аналоговых же системах большое количество энергии постоянно теряется из-за электромагнитных преобразований.
  • Благодаря полупроводниковым элементам, значительно снижается стоимость изделия.
  • Входное напряжение обладает более широким диапазоном. Импульсные блоки можно подключать к любым сетям, поскольку для них не имеет значения частота и амплитуда.
  • Все устройства надежно защищены от коротких замыканий, перегрузок и прочих нестандартных ситуаций.

Однако, даже такие совершенные устройства имеют определенные недостатки. В первую очередь, это помехи, вызванные высокочастотным преобразователем. Из-за этого требуется установка фильтра для подавления этих помех. Он не всегда достаточно эффективен, поэтому применение импульсных блоков ограничено для совместной эксплуатации с высокоточной аппаратурой.

Использование этих устройств предъявляет особые требования к подключаемой нагрузке, которая не должна быть слишком высокой или слишком низкой. В случае превышения током уровня нижнего или верхнего порога, выходное напряжение по своим характеристикам будет значительно отличаться от номинального.

Самостоятельная сборка импульсного блока питания

Довольно часто возникают ситуации, когда требуется собрать импульсный блок питания своими руками для конкретного электронного оборудования. За основу можно взять импульсный трансформатор, имеющийся в компьютерном блоке и сделать достаточно мощный ИБП. Схема довольно простая, не требующая отдельных настроек.

Основой полумостового драйвера служит микросхема IR2151. Усиление сигнала генератора осуществляется с помощью мощного полевого транзистора, закрепляемого на теплоотводе.

Самый простой импульсный блок питания будет состоять из следующих деталей: термистора, резистора на 47 кОм, диода FR107, электролитических конденсаторов и других деталей, обозначенных на схеме.

Подобные самодельные блоки питания могут использоваться для достаточно мощных электронных устройств. При желании их можно всегда подогнать по параметрам под конкретный прибор.

electric-220.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *