Рейтинг арм процессоров – — IMHOPHONE.RU

Автор: | 28.11.2019

Содержание

Процессоры ARM: особенности архитектуры, отличия и перспективы

Первые чипы ARM появились еще три десятилетия назад благодаря стараниям британской компании Acorn Computers (ныне ARM Limited), но долгое время пребывали в тени своих более именитых собратьев – процессоров архитектуры х86. Все перевернулось с ног на голову с переходом IT-индустрии в пост-компьютерную эпоху, когда балом стали править уже не ПК, а мобильные гаджеты.

Особенности архитектуры ARM

Начать стоит, пожалуй, с того, что в процессорной архитектуре x86, которую сейчас используют компании Intel и AMD, применяется набор команд CISC (Complex Instruction Set Computer), хоть и не в чистом виде. Так, большое количество сложных по своей структуре команд, что долгое время было отличительной чертой CISC, сначала декодируются в простые, и только затем обрабатываются. Понятное дело, на всю эту цепочку действий уходит немало энергии.

Чип ARM1 – первенец компании Acorn Computers, который производился на фабриках VLSI

В качестве энергоэффективной альтернативы выступают чипы архитектуры ARM с набором команд RISC (Reduced Instruction Set Computer). Его преимущество в изначально небольшом наборе простых команд, которые обрабатываются с минимальными затратами. Как результат, сейчас на рынке потребительской электроники мирно (на самом деле, не очень мирно) уживаются две процессорные архитектуры – х86 и ARM, каждая из которых имеет свои преимущества и недостатки.

Первым в истории устройством на базе процессора архитектуры ARM был персональный компьютер BBC Micro

Архитектура х86 позиционируется как более универсальная с точки зрения посильных ей задач, включая даже столь ресурсоемкие, как редактирование фотографий, музыки и видео, а также шифрование и сжатие данных. В свою очередь архитектура ARM «выезжает» за счет крайне низкого энергопотребления и в целом-то достаточной производительности для важнейших на сегодня целей: прорисовки веб-страниц и воспроизведения медиaконтента.

Архитектурные отличия процессоров x86 (набор команд CISC) и ARM (набор команд RISC)

Бизнес-модель компании ARM Limited

Сейчас компания ARM Limited занимается лишь разработкой референсных процессорных архитектур и их лицензированием. Создание же конкретных моделей чипов и их последующее массовое производство – это уже дело лицензиатов ARM, которых насчитывается превеликое множество. Есть среди них как известные лишь в узких кругах компании вроде STMicroelectronics, HiSilicon и Atmel, так и IT-гиганты, имена которых у всех на слуху – Samsung, NVIDIA и Qualcomm. С полным списком компаний-лицензиатов можно ознакомиться на соответствующей странице официального сайта ARM Limited.

Только компаний, получивших лицензию на производство чипов семейства ARM Cortex-A, насчитается несколько десятков, а ведь в портфолио ARM Limited есть и другие разработки

Столь большое число лицензиатов вызвано в первую очередь обилием сфер применения ARM-процессоров, причем мобильные гаджеты – это лишь вершина айсберга. Недорогие и энергоэффективные чипы используется во встраиваемых системах, сетевом оборудовании и измерительных приборах. Платежные терминалы, внешние 3G-модемы и спортивные пульсометры – все эти устройства основаны на процессорной архитектуре ARM.

Российская компания «ПКК Миландр» со штаб-квартирой в Зеленограде, что интересно, тоже получила лицензию на производство чипов архитектуры ARM

По подсчетам аналитиков, сама ARM Limited зарабатывает на каждом произведенном чипе $0,067 в виде роялти. Но это сильно усредненная сумма, ведь по себестоимости новейшие многоядерные процессоры значительно превосходят одноядерные чипы устаревшей архитектуры.

Однокристальная система

С технической точки зрения называть чипы архитектуры ARM процессорами не совсем верно, ведь помимо одного или нескольких вычислительных ядер они включают целый ряд сопутствующих компонентов. Более уместными в данном случае являются термины однокристальная система и система-на-чипе (от англ. system on a chip).

Так, новейшие однокристальные системы для смартфонов и планшетных компьютеров включают контроллер оперативной памяти, графический ускоритель, видеодекодер, аудиоокодек и опционально модули беспроводной связи. Узкоспециализированные чипы могут включать дополнительные контроллеры для взаимодействия с периферийными устройствами, например датчиками.

Схема строения однокристальной системы с четырьмя ядрами ARM Cortex-A9

Отдельные компоненты однокристальной системы могут быть разработаны как непосредственно ARM Limited, так и сторонними компаниями. Ярким тому примером являются графические ускорители, разработкой которых помимо ARM Limited (графика Mali) занимаются Qualcomm (графика Adreno) и NVIDIA (графика GeForce ULP).

Не стоит забывать и про компанию Imagination Technologies, которая ничем другим, кроме проектирования графических ускорителей PowerVR, вообще не занимается. А ведь именно ей принадлежит чуть ли не половина глобального рынка мобильной графики: гаджеты Apple и Amazon, планшетники Samsung Galaxy Tab 2, а также недорогие смартфоны на базе процессоров MTK.

Устаревшие поколения чипов

Морально устаревшими, но все еще широко распространенными процессорными архитектурами являются ARM9 и ARM11, которые принадлежат к семействам ARMv5 и ARMv6 соответственно.

ARM9. Чипы ARM9 могут достигать тактовой частоты 400 МГц и, скорее всего, именно они установлены внутри вашего беспроводного маршрутизатора и старенького, но все еще надежно работающего мобильного телефона вроде Sony Ericsson K750i и Nokia 6300. Критически важным для чипов ARM9 является набор инструкций Jazelle, который позволяет комфортно работать с Java-приложениями (Opera Mini, Jimm, Foliant и др.).

ARM11. Процессоры ARM11 могут похвастаться расширенным по сравнению с ARM9 набором инструкций и куда более высокой тактовой частотой (вплоть до 1 ГГц), хотя для современных задач их мощности тоже не достаточно. Тем не менее, благодаря невысокому энергопотреблению и, что не менее важно, себестоимости, чипы ARM11 до сих пор применяются в смартфонах начального уровня: Samsung Galaxy Pocket и Nokia 500.

Чип Broadcom Thunderbird – один из немногочисленных представителей поколения ARM11, который до сих пор применяется в Android-смартфонах

Современные поколения чипов

Все более-менее новые чипы архитектуры ARM принадлежат к семейству ARMv7, флагманские представители которого уже достигли отметки в восемь ядер и тактовой частоты свыше 2 ГГц. Разработанные непосредственно ARM Limited процессорные ядра принадлежат к линейке Cortex и большинство производителей однокристальных систем используют их без существенных изменений. Лишь компании Qualcomm и Apple создали собственные модификации на основе ARMv7 – первая назвала свои творения Scorpion и Krait, а вторая – Swift.

Чип Apple A6 (ядро Swift) – первая попытка Купертино собственноручно модифицировать архитектуру ARMv7

ARM Cortex-A8. Исторически первым процессорным ядром семейства ARMv7 было Cortex-A8, которое легло в основу таких известных SoC своего времени как Apple A4 (iPhone 4 и iPad) и Samsung Hummingbird (Samsung Galaxy S и Galaxy Tab). Оно демонстрирует примерно вдвое более высокую производительность по сравнению с предшествующим ARM11. К тому же, ядро Cortex-A8 получило сопроцессор NEON для обработки видео высокого разрешения и поддержку плагина Adobe Flash.

Правда, все это негативно сказалось на энергопотреблении Cortex-A8, которое значительно выше чем у ARM11. Несмотря на то, что чипы ARM Cortex-A8 до сих пор применяются в бюджетных планшетниках (однокристальная система Allwiner Boxchip A10), их дни пребывания на рынке, по всей видимости, сочтены.

Однокристальная система TI OMAP 3 – представитель некогда популярного, но сейчас уже угасающего поколения ARM Cortex-A8

ARM Cortex-A9. Вслед за Cortex-A8 компания ARM Limited представила новое поколение чипов – Cortex-A9, которое сейчас является самым распространенным и занимает среднюю ценовую нишу. Производительность ядер Cortex-A9 выросла примерно втрое по сравнению с Cortex-A8, да еще и появилась возможность объединять их по два или даже четыре на одном чипе.

Сопроцессор NEON стал уже необязательным: компания NVIDIA в своей однокристальной системе Tegra 2 его упразднила, решив освободить побольше места для графического ускорителя. Правда, ничего хорошего из этого не вышло, ведь большинство приложений-видеопроигрывателей все равно ориентировались на проверенный временем NEON.

Почти все флагманские планшетные компьютеры образца 2011 года были построены на базе чипа NVIDIA Tegra 2

Именно во времена «царствования» Cortex-A9 появились первые реализации предложенной ARM Limited концепции big.LITTLE, согласно которой однокристальные системы должны иметь одновременно мощные и слабые, но энергоэффективные процессорные ядра. Первой реализацией концепции big.LITTLE стала система-на-чипе NVIDIA Tegra 3 с четырьмя ядрами Cortex-A9 (до 1,7 ГГц) и пятым энергоэффективным ядром-компаньоном (500 МГц) для выполнения простеньких фоновых задач.

ARM Cortex-A5 и Cortex-A7. При проектировании процессорных ядер Cortex-A5 и Cortex-A7 компания ARM Limited преследовала одно и ту же цель – добиться компромисса между минимальным энергопотреблением ARM11 и приемлемым быстродействием Cortex-A8. Не забыли и про возможность объединения ядер по два-четыре – многоядерные чипы Cortex-A5 и Cortex-A7 мало-помалу появляются в продаже (Qualcomm MSM8625 и MTK 6589).

Схема строения однокристальной системы c четырьмя ядрами ARM Cortex-A5

ARM Cortex-A15. Процессорные ядра Cortex-A15 стали логическим продолжением Cortex-A9 – как результат, чипам архитектуры ARM впервые в истории удалось примерно сравниться по быстродействию с Intel Atom, а это уже большой успех. Не зря ведь компания Canonical в системных требования к версии ОС Ubuntu Touch с полноценной многозадачностью указала двухъядерный процессор ARM Cortex-A15 или аналогичный Intel Atom.

Первой массовой однокристальной системой Cortex-A15 стала двухъядерная Exynos 5250, которая применяется в планшетнике Google Nexus 10 и лэптопе Samsung Chromebook

Очень скоро в продажу поступят многочисленные гаджеты на базе NVIDIA Tegra 4 с четырьмя ядрами ARM Cortex-A15 и пятым ядром-компаньоном Cortex-A7. Вслед за NVIDIA концепцию big.LITTLE подхватила компания Samsung: «сердцем» смартфона Galaxy S4 стал чип Exynos 5 Octa с четырьмя ядрами Cortex-A15 и таким же количеством энергоэффективных ядер Cortex-A7.

Схема однокристальной системы big.LITTLE с процессорными ядрами ARM Cortex-A15 (big) и Cortex-A7 (LITTLE)

Дальнейшие перспективы

Мобильные гаджеты на базе чипов Cortex-A15 еще толком не появились в продаже, а основные тенденции дальнейшего развития архитектуры ARM уже известны. Компания ARM Limited уже официально представила следующее семейство процессоров ARMv8, представители которого в обязательном порядке будут 64-разрядными. Открывают новую эпоху RISC-процессоров ядра Cortex-A53 и Cortex-A57: первое энергоэффективное, а второе высокопроизводительное, но оба способны работать с большими объемами оперативной памяти.

Производители потребительской электроники семейством процессоров ARMv8 пока особо-то не заинтересовались, но на горизонте вырисовались новые лицензиаты, планирующие вывести чипы ARM на серверный рынок: AMD и Calxeda. Идея новаторская, но вполне имеет право на жизнь: те же графические ускорители NVIDIA Tesla, состоящие из большого числа простых ядер, на практике доказали свою эффективность как серверных решений.

itc.ua

Процессоры ARM, что это?

Подавляющее большинство современных гаджетов используют процессоры на архитектуре ARM, разработкой которой занимается одноимённая компания ARM Limited. Что интересно, компания сама не производит процессоры, а только лицензирует свои технологии для сторонних производителей чипов. Помимо этого, компания также разрабатывает процессорные ядра Cortex и графические ускорители Mali, которых мы обязательно коснёмся в этом материале.

ARM Limited

Компания ARM, фактически, является монополистом в своей области, и подавляющее большинство современных смартфонов и планшетов на различных мобильных операционных системах используют процессоры именно на архитектуре ARM. Производители чипов лицензируют у ARM отдельные ядра, наборы инструкций и сопутствующие технологии, причём стоимость лицензий значительно разнится в зависимости от типа процессорных ядер (это могут быть как маломощные бюджетные решения, так и ультрасовременные четырёхъядерные и даже восьмиядерные чипы) и дополнительных компонентов. Годовой отчёт о прибыли ARM Limited за 2006 год показал выручку в 161 миллион долларов за лицензирование около 2,5 миллиардов процессоров (в 2011 году этот показатель составил уже 7,9 млрд), что означает примерно 0,067 долларов за один чип. Впрочем, по озвученной выше причине, это очень усреднённый показатель из-за разницы в ценах на различные лицензии, и с тех пор прибыль компании должна была вырасти многократно.

 

В настоящее время ARM-процессоры имеют очень широкое распространение. Чипы на этой архитектуре используются повсюду, вплоть до серверов, но чаще всего ARM можно встретить во встраиваемых и мобильных системах, начиная с контроллеров для жёстких дисков и заканчивая современными смартфонами, планшетами и прочими гаджетами.

Ядра Cortex

ARM разрабатывает несколько семейств ядер, которые используются для различных задач. К примеру, процессоры, основанные на Cortex-Mx и Cortex-Rx (где “х” — цифра или число, обозначающее точный номер ядра) используются во встраиваемых системах и даже бытовых устройствах, к примеру, роутерах или принтерах.

Cortex

Подробно на них мы останавливаться не будем, ведь нас, в первую очередь, интересует семейство Cortex-Ax — чипы с такими ядрами используются в наиболее производительных устройствах, в том числе смартфонах, планшетах и игровых консолях. ARM постоянно работает над новыми ядрами из линейки Cortex-Ax, но на момент написания этой статьи в смартфонах используются следующие из них:

  • Cortex-A5;
  • Cortex-A7;
  • Cortex-A8;
  • Cortex-A9;
  • Cortex-A12;
  • Cortex-A15;
  • Cortex-A53;
  • Cortex-A57.

Чем больше цифра — тем выше производительность процессора и, соответственно, дороже класс устройств, в которых он используется. Впрочем, стоит отметить, что это правило соблюдается не всегда: к примеру, чипы на ядрах Cortex-A7 имеют большую производительность, нежели на Cortex-A8. Тем не менее, если процессоры на Cortex-A5 уже считаются чуть ли не устаревшими и почти не используются в современных устройствах, то CPU на Cortex-A15 можно найти во флагманских коммуникаторах и планшетах. Не так давно ARM официально объявила о разработке новых, более мощных и, одновременно, энергоэффективных ядер Cortex-A53 и Cortex-A57, которые будут объединены на одном чипе с применением технологии ARM big.LITTLE и поддерживать набор команд ARMv8 (“версию архитектуры”), но в настоящее время они не применяются в массовых потребительских устройствах. Большинство чипов с ядрами Cortex могут быть многоядерными, и в современных топовых смартфонах повсеместное распространение получили четырёхъядерные процессоры.

Крупные производители смартфонов и планшетов обычно используют процессоры известных чипмейкеров вроде Qualcomm или собственные решения, которые уже успели стать довольно популярными (к примеру, Samsung и её семейство чипсетов Exynos), но среди технических характеристик гаджетов большинства небольших компаний зачастую можно встретить описание вроде “процессор на Cortex-A7 с тактовой частотой 1 ГГц” или “двухъядерный Cortex-A7 с частотой 1 ГГц”, которое обычному пользователю ничего не скажет. Для того, чтобы разобраться, в чём заключаются отличия таких ядер между собой, остановимся на основных.

Cortex-A5

Ядро Cortex-A5 используются в недорогих процессорах для наиболее бюджетных устройств. Такие устройства предназначены только для выполнения ограниченного круга задач и запуска простых приложений, но совершенно не рассчитаны на ресурсоёмкие программы и, тем более, игры. В качестве примера гаджета с процессором на Cortex-A5 можно назвать Highscreen Blast, который получил чип Qualcomm Snapdragon S4 Play MSM8225, содержащий два ядра Cortex-A5 с тактовой частотой 1,2 ГГц.

Cortex-A7

Процессоры на Cortex-A7 являются более мощными, чем чипы Cortex-A5, а кроме того, больше распространены. Такие чипы выполняются по 28-нанометровому техпроцессу и имеют большой кэш второго уровня до 4 мегабайт. Ядра Cortex-A7 встречаются, преимущественно, в бюджетных смартфонах и недорогих устройствах среднего сегмента вроде iconBIT Mercury Quad, а также, в качестве исключения, в Samsung Galaxy S IV GT-i9500 с процессором Exynos 5 Octa — этот чипсет при выполнении нетребовательных задач использует энергосберегающий четырёхъядерный процессор на Cortex-A7.

Cortex-A8

Ядро Cortex-A8 не так распространено, как его “соседи”, Cortex-A7 и Cortex-A9, но всё же используется в различных гаджетах начального уровня. Рабочая тактовая частота чипов на Cortex-A8 может составлять от 600 МГц до 1 ГГц, но иногда производители разгоняют процессоры и до более высоких частот. Особенностью ядра Cortex-A8 является отсутствие поддержки многоядерных конфигураций (то есть, процессоры на этих ядрах могут быть только одноядерными), а выполняются они по 65-нанометровому техпроцессу, который уже считается устаревшим.

Сortex-A9

Ещё пару лет назад ядра Cortex-A9 считались топовым решением и использовались как в традиционных одноядерных, так и более мощных двухъядерных чипах, например Nvidia Tegra 2 и Texas Instruments OMAP4. В настоящее время процессоры на Cortex-A9, выполненные по 40-нанометровому техпроцессу не теряют популярность и используются во многих смартфонах среднего сегмента. Рабочая частота таких процессоров может составлять от 1 до 2 и более гигагерц, но обычно она ограничивается 1,2-1,5 ГГц.

Cortex-A12

В июне 2013 года компания ARM официально представила ядро Cortex-A12, которое выполняется по новому 28-нанометровому техпроцессу и призвано заменить ядра Cortex-A9 в смартфонах среднего сегмента. Разработчик обещает увеличение производительности на 40% по сравнению с Cortex-A9, а кроме того, ядра Cortex-A12 смогут участвовать в архитектуре ARM big.LITTLE в качестве производительных вместе с энергосберегающими Cortex-A7, что позволит производителям создавать недорогие восьмиядерные чипы. Правда,на момент написания статьи всё это только в планах, и массовое производство чипов на Cortex-A12 ещё не налажено, хотя компания RockChip уже объявила о своём намерении выпустить четырёхъядерный процессор на Cortex-A12 с частотой 1,8 ГГц.

Cortex-A15

На 2013 год ядро Cortex-A15 и его производные является топовым решением и используется в чипах флагманских коммуникаторах различных производителей. Среди новых процессоров, выполненных по 28-нм техпроцессу и основанных на Cortex-A15 — Samsung Exynos 5 Octa и Nvidia Tegra 4, а также это ядро нередко выступает платформой для модификаций других производителей. Например, последний процессор компании Apple A6X использует ядра Swift, которые являются модификацией Cortex-A15. Чипы на Cortex-A15 способны работать на частоте 1,5-2,5 ГГц, а поддержка множества стандартов сторонних компаний и возможность адресовать до 1 ТБ физической памяти делает возможным применение таких процессоров в компьютерах (как тут не вспомнить мини-компьютер размером с банковскую карту Raspberry Pi).

Cortex-A50 series

В первой половине 2013 года ARM представила новую линейку чипов, которая получила название Cortex-A50 series. Ядра этой линейки будут выполнены по новой версии архитектуры, ARMv8, и поддерживать новые наборы команд, а также станут 64-битными. Переход на новую разрядность потребует оптимизации мобильных операционных систем и приложений, но, разумеется, сохранится поддержка десятков тысяч 32-битных приложений. Первой на 64-битную архитектуру перешла компания Apple. Последние устройства компании, например, iPhone 5S, работают на именно таком ARM-процессоре Apple A7. Примечательно, что он не использует ядра Cortex – они заменены на собственные ядра производителя под названием Swift. Одна из очевидных причин необходимости перехода к 64-битным процессорам — поддержка более 4 ГБ оперативной памяти, а, кроме того, возможность оперировать при вычислении намного большими числами. Конечно, пока это актуально, в первую очередь, для серверов и ПК, но мы не удивимся, если через несколько лет на рынке появятся смартфоны и планшеты с таким объёмом ОЗУ. На сегодняшний день о планах по выпуску чипов на новой архитектуре и смартфонов с их использованием ничего не известно, но, вероятно, именно такие процессоры и получат флагманы в 2014 году, о чём уже заявила компания Samsung.

Cortex-A53

Открывает серию ядро Cortex-A53, которое будет прямым “наследником” Cortex-A9. Процессоры на Cortex-A53 заметно превосходят чипы на Cortex-A9 в производительности, но, при этом, сохраняется низкое энергопотребление. Такие процессоры могут быть использованы как по одиночке, так и в конфигурации ARM big.LITTLE, будучи объединенными на одном чипсете с процессором на Cortex-A57

Perfomance Cortex-A53, Cortex-A57

 

Cortex-A57

Процессоры на Cortex-A57, которые будут выполнены по 20-нанометровому техпроцессу, должны стать самыми мощными ARM-процессорами в ближайшем будущем. Новое ядро значительно превосходит своего предшественника, Cortex-A15 по различным параметрам производительности (сравнение вы можете видеть выше), и, по словам ARM, которая всерьёз нацелена на рынок ПК, станет выгодным решением для обычных компьютеров (включая лэптопы), а не только мобильных устройств.

 

ARM big.LITTLE

ARM big.LITTLE

В качестве высокотехнологичного решения проблемы энергопотребления современных процессоров ARM предлагает технологию big.LITTLE, суть которой заключается в объединении на одном чипе ядер различных типов, как правило, одинакового количества энергосберегающих и высокопроизводительных.

Существует три схемы работы ядер различного типа на одном чипе: big.LITTLE (миграция между кластерами), big.LITTLE IKS (миграция между ядрами) и big.LITTLE MP (гетерогенный мультипроцессинг).

big.LITTLE (миграция между кластерами)

Первым чипсетом на архитектуре ARM big.LITTLE стал процесссор Samsung Exynos 5 Octa. В нём используется оригинальная схема big.LITTLE “4+4”, что означает объединение в два кластера (отсюда и название схемы) на одном кристалле четырёх высокопроизводительных ядер Cortex-A15 для ресурсоёмких приложений и игр и четырёх энергосберегающих ядер Cortex-A7 для повседневной работы с большинством программ, причём в один момент времени могут работать ядра только одного типа. Переключение между группами ядер происходит практически мгновенно и незаметно для пользователя в полностью автоматическом режиме.

big.LITTLE IKS (миграция между ядрами)

Более сложная реализация архитектуры big.LITTLE — объединение нескольких реальных ядер (как правило двух) в одно виртуальное, управляемое ядром операционной системы, которое решает, какие задействовать ядра — энергоэффективные или производительные. Разумеется, виртуальных ядер также несколько — на иллюстрации приведен пример схемы IKS, где в каждом из четырёх виртуальных ядер находятся по одному ядру Cortex-A7 и Cortex-A15.

big.LITTLE MP (гетерогенный мультипроцессинг)

Схема big.LITTLE MP является наиболее “продвинутой” — в ней каждое ядро является независимым и может включаться ядром ОС по необходимости. Это значит, что если используются четыре ядра Cortex-A7 и столько же ядер Cortex-A15, в чипсете, построенном на архитектуре ARM big.LITTLE MP, смогут работать одновременно все 8 ядер, даже несмотря на то, что они разных типов. Одним из первых процессоров такого типа стал восьмиядерный чип компании Mediatek — MT6592, который может работать на тактовой частоте 2 ГГц, а также записывать и воспроизводить видео в разрешении UltraHD.

Будущее

По имеющейся на данный момент информации, в ближайшее время ARM совместно с другими компаниями планирует наладить выпуск big.LITTLE чипов следующего поколения, которые будут использовать новые ядра Cortex-A53 и Cortex-A57. Кроме того, бюджетные процессоры на ARM big.LITTLE собирается выпускать китайский производитель MediaTek, которые будут работать по схеме “2+2”, то есть, использовать две группы по два ядра.

Графические ускорители Mali

Помимо процессоров, ARM также разрабатывает и графические ускорители семейства Mali. Подобно процессорам, графические ускорители характеризуются множеством параметров, например, уровнем сглаживания, интерфейсом шины, кэшем (сверхбыстрая память, используемая для повышения скорости работы) и количеством “графических ядер” (хотя, как мы писали в прошлой статье, этот показатель, несмотря на похожесть с термином, использующимся при описании CPU, практически не влияет производительность при сравнении двух GPU).

Первым графическим ускорителем ARM стал ныне неиспользуемый Mali 55, который был использован в сенсорном телефоне LG Renoir (да-да, самом обычном сотовом телефоне). GPU не использовался в играх — только для отрисовки интерфейса, и обладал примитивными по нынешним меркам характеристиками, но именно он стал “родоначальником” серии Mali.

С тех пор прогресс шагнул далеко вперёд, и сейчас немалое значение имеют поддерживаемые API и игровые стандарты. К примеру, поддержка OpenGL ES 3.0 сейчас заявлена только в самых мощных процессорах вроде Qualcomm Snapdragon 600 и 800, а, если говорить о продукции ARM, то стандарт поддерживают такие ускорители, как Mali-T604 (именно он стал первым графическим процессором ARM, выполненным на новой микроархитектуре Midgard), Mali-T624, Mali-T628, Mali-T678 и некоторые другие близкие к ним по характеристикам чипы. Тот или иной GPU, как правило, тесно связан с ядром, но, тем не менее, указывается отдельно, а, значит, если вам важно качество графики в играх, то имеет смысл посмотреть на название ускорителя в спецификациях смартфона или планшета.

Есть у ARM в линейке и графические ускорители для смартфонов среднего сегмента, наиболее распространёнными среди которых являются Mali-400 MP и Mali-450 MP, которые отличаются от своих старших братьев сравнительно небольшой производительностью и ограниченным набором API и поддерживаемых стандартов. Несмотря на это, указанные GPU продолжают использоваться в новых смартфонах, к примеру, Zopo ZP998, который получил графический ускоритель Mali-450 MP4 (улучшенную модификацию Mali-450 MP) вдобавок к восьмиядерному процессору MTK6592.

Предположительно, в конце 2014 года должны появиться смартфоны с новейшими графическими ускорителями ARM: Mali-T720, Mali-T760 и Mali-T760 MP, которые были представлены в октябре 2013 года. Mali-T720 должен стать новым GPU для недорогих смартфонов и первым графическим процессором этого сегмента с поддержкой Open GL ES 3.0. Mali-T760, в свою очередь, станет одним из наиболее мощных мобильных графических ускорителей: по заявленным характеристикам, GPU имеет 16 вычислительных ядер и обладает поистине огромной вычислительной мощностью, 326 Гфлопс, но, в то же время, в четыре раза меньшим энергопотреблением, чем упомянутый выше Mali-T604.

Роль CPU и GPU от ARM на рынке

Несмотря на то, что компания ARM является автором и разработчиком одноимённой архитектуры, которая, повторимся, сейчас используется в подавляющем большинстве мобильных процессоров, её решения в виде ядер и графических ускорителей не пользуются популярностью у крупных производителей смартфонов. К примеру, справедливо считается, что флагманские коммуникаторы на Android OS должны иметь процессор Snapdragon с ядрами Krait и графический ускоритель Adreno от Qualcomm, чипсеты этой же компании используются в смартфонах на Windows Phone, а некоторые производители гаджетов, к примеру, Apple, разрабатывают собственные ядра. Почему же в настоящее время сложилась именно такая ситуация?

Возможно, часть причин может лежать глубже, но одна из них — отсутствие чёткого позиционирования CPU и GPU от ARM среди продуктов других компаний, вследствие чего разработки компании воспринимаются как базовые компоненты для использования в устройствах B-брендов, недорогих смартфонах и создания на их основе более зрелых решений. К примеру, компания Qualcomm почти на каждой своей презентации повторяет, что одной из её главных целей при создании новых процессоров является уменьшение энергопотребления, а её ядра Krait, будучи доработанными ядрами Cortex, стабильно показывают более высокие результаты по производительности. Аналогичное утверждение справедливо и для чипсетов Nvidia, которые ориентированы на игры, ну а что касается процессоров Exynos от Samsung и A-серии от Apple, то они имеют свой рынок за счёт установки в смартфоны этих же компаний.

Вышесказанное совершенно не значит, что разработки ARM значительно хуже процессоров и ядер сторонних компаний, но конкуренция на рынке в конечном итоге идет покупателям смартфонов только на пользу. Можно сказать, что ARM предлагает некие заготовки, приобретая лицензию на которые, производители могут уже самостоятельно их доработать.

Заключение

Микропроцессоры на архитектуре ARM успешно завоевали рынок мобильных устройств благодаря низкому энергопотреблению и сравнительно большой вычислительной мощности. Раньше с ARM конкурировали другие RISC-архитектуры, например, MIPS, но сейчас у неё остался только один серьёзный конкурент — компания Intel с архитектурой x86, которая, к слову, хотя и активно борется за свою долю рынка, пока не воспринимается ни потребителями, ни большинством производителей всерьёз, особенно при фактическом отсутствии флагманов на ней (Lenovo K900 сейчас уже не может конкурировать с последними топовыми смартфонами на ARM-процессорах).

А как вы думаете, сможет ли кто-нибудь потеснить ARM, и как дальше сложится судьба этой компании и её архитектуры?

За предоставленную информацию благодарим 4pda.ru. 

Понравилось? Поделись с друзьями! 🙂

Похожее

4iam.net

Чем архитектура ARM отличается от x86

В наше время существует две самые популярные архитектуры процессоров. Это x86, которая была разработана еще 80х годах и используется в персональных компьютерах и ARM — более современная, которая позволяет сделать процессоры меньше и экономнее. Она используется в большинстве мобильных устройств или планшетов.

Обе архитектуры имеют свои плюсы и минусы, а также сферы применения, но есть и общие черты. Многие специалисты говорят, что за ARM будущее, но у нее остаются некоторые недостатки, которых нет в x86. В нашей сегодняшней статье мы рассмотрим чем архитектура arm отличается от x86. Рассмотрим принципиальные отличия ARM или x86, а также попытаемся определить что лучше.

Содержание статьи:

Что такое архитектура?

Процессор — это основной компонент любого вычислительного устройства, будь то смартфон или компьютер. От его производительности зависит то, насколько быстро будет работать устройство и сколько оно сможет работать от батареи. Если говорить просто, то архитектура процессора — это набор инструкций, которые могут использоваться при составлении программ и реализованы на аппаратном уровне с помощью определенных сочетаний транзисторов процессора. Именно они позволяют программам взаимодействовать с аппаратным обеспечением и определяют каким образом будут передаваться данные в память и считываться оттуда.

На данный момент существуют два типа архитектур: CISC (Complex Instruction Set Computing) и RISC (Reduced Instruction Set Computing). Первая предполагает, что в процессоре будут реализованы инструкции на все случаи жизни, вторая, RISC — ставит перед разработчиками задачу создания процессора с набором минимально необходимых для работы команд. Инструкции RISC имеют меньший размер и более просты.

Архитектура x86

Архитектура процессора x86 была разработана в 1978 году и впервые появилась в процессорах компании Intel и относится к типу CISC. Ее название взято от модели первого процессора с этой архитектурой — Intel 8086. Со временем, за неимением лучшей альтернативы эту архитектуру начали поддерживать и другие производители процессоров, например, AMD. Сейчас она является стандартом для настольных компьютеров, ноутбуков, нетбуков, серверов и других подобных устройств. Но также иногда процессоры x86 применяются в планшетах, это довольно привычная практика.

Первый процессор Intel 8086 имел разрядность 16 бит, далее в 2000 годах вышел процессор 32 битной архитектуры, и еще позже появилась архитектура 64 бит. Мы подробно рассматривали разрядность процессоров в отдельной статье. За это время архитектура очень сильно развилась были добавлены новые наборы инструкций и расширения, которые позволяют очень сильно увеличить производительность работы процессора.

В x86 есть несколько существенных недостатков. Во-первых — это сложность команд, их запутанность, которая возникла из-за длинной истории развития. Во-вторых, такие процессоры потребляют слишком много энергии и из-за этого выделяют много теплоты. Инженеры x86 изначально пошли по пути получения максимальной производительности, а скорость требует ресурсов. Перед тем, как рассмотреть отличия arm x86, поговорим об архитектуре ARM.

 

Архитектура ARM

Эта архитектура была представлена чуть позже за x86 — в 1985 году. Она была разработана известной в Британии компанией Acorn, тогда эта архитектура называлась Arcon Risk Machine и принадлежала к типу RISC, но затем была выпущена ее улучшенная версия Advanted RISC Machine, которая сейчас и известна как ARM.

При разработке этой архитектуры инженеры ставили перед собой цель устранить все недостатки x86 и создать совершенно новую и максимально эффективную архитектуру. ARM чипы получили минимальное энергопотребление и низкую цену, но имели низкую производительность работы по сравнению с x86, поэтому изначально они не завоевали большой популярности на персональных компьютерах.

В отличие от x86, разработчики изначально пытались получить минимальные затраты на ресурсы, они имеют меньше инструкций процессора, меньше транзисторов, но и соответственно меньше всяких дополнительных возможностей. Но за последние годы производительность процессоров ARM улучшалась. Учитывая это, и низкое энергопотребление они начали очень широко применяться в мобильных устройствах, таких как планшеты и смартфоны.

Отличия ARM и x86

А теперь, когда мы рассмотрели историю развития этих архитектур и их принципиальные отличия, давайте сделаем подробное сравнение ARM и x86, по различным их характеристикам, чтобы определить что лучше и более точно понять в чем их разница.

Производство

Производство x86 vs arm отличается. Процессоры x86 производят только две компании Intel и AMD. Изначально эта была одна компания, но это совсем другая история. Право на выпуск таких процессоров есть только у этих компаний, а это значит, что и направлением развития инфраструктуры будут управлять только они.

ARM работает совсем по-другому. Компания, разрабатывающая ARM, не выпускает ничего. Они просто выдают разрешение на разработку процессоров этой архитектуры, а уже производители могут делать все, что им нужно, например, выпускать специфические чипы с нужными им модулями.

Количество инструкций

Это главные различия архитектуры arm и x86. Процессоры x86 развивались стремительно, как более мощные и производительные. Разработчики добавили большое количество инструкций процессора, причем здесь есть не просто базовый набор, а достаточно много команд, без которых можно было бы обойтись. Изначально это делалось чтобы уменьшить объем памяти занимаемый программами на диске. Также было разработано много вариантов защит и виртуализаций, оптимизаций и многое другое. Все это требует дополнительных транзисторов и энергии.

ARM более прост. Здесь намного меньше инструкций процессора, только те, которые нужны операционной системе и реально используются. Если сравнивать x86, то там используется только 30% от всех возможных инструкций. Их проще выучить, если вы решили писать программы вручную, а также для их реализации нужно меньше транзисторов.

Потребление энергии

Из предыдущего пункта выплывает еще один вывод. Чем больше транзисторов на плате, тем больше ее площадь и потребление энергии, правильно и обратное.

Процессоры x86 потребляют намного больше энергии, чем ARM. Но на потребление энергии также влияет размер самого транзистора. Например, процессор Intel i7 потребляет 47 Ватт, а любой процессор ARM для смартфонов — не более 3 Ватт. Раньше выпускались платы с размером одного элемента 80 нм, затем Intel добилась уменьшения до 22 нм, а в этом году ученые получили возможность создать плату с размером элемента 1 нанометр. Это очень сильно уменьшит энергопотребление без потерь производительности.

За последние годы потребление энергии процессорами x86 очень сильно уменьшилось, например, новые процессоры Intel Haswell могут работать дольше от батареи. Сейчас разница arm vs x86 постепенно стирается.

Тепловыделение

Количество транзисторов влияет еще на один параметр — это выделение тепла. Современные устройства не могут преобразовывать всю энергию в эффективное действие, часть ее рассеивается в виде тепла. КПД плат одинаковый, а значит чем меньше транзисторов и чем меньше их размер — тем меньше тепла будет выделять процессор. Тут уже не возникает вопрос ARM или x86 будет выделять меньше теплоты.

Производительность процессоров

ARM изначально не были заточены для максимальной производительности, это область преуспевания x86. Отчасти этому причина меньше количество транзисторов. Но в последнее время производительность ARM процессоров растет, и они уже могут полноценно использоваться в ноутбуках или на серверах.

Выводы

В этой статье мы рассмотрели чем отличается ARM от x86. Отличия довольно серьезные. Но в последнее время грань между обоими архитектурами стирается. ARM процессоры становятся более производительными и быстрыми, а x86 благодаря уменьшению размера структурного элемента платы начинают потреблять меньше энергии и выделять меньше тепла. Уже можно встретить ARM процессор на серверах и в ноутбуках, а x86 на планшетах и в смартфонах.

А как вы относитесь к этим x86 и ARM? За какой технологией будущее по вашему мнению? Напишите в комментариях! Кстати, Линус Торвальдс предпочитает x86.

На завершение видео о развитии арихтектуры ARM:

losst.ru

ARM vs Intel – сравнение производительности процессоров



Немного истории

Исторически было два разных класса микропроцессоров – для ПК (и серверов) и для всяких встроенных применений – калькуляторы, телефоны, блоки управления кофемолки и т.п. Эти два класса микропроцессоров практически не пересекались – процессоры для ПК и серверов были на порядки быстрей, но и потребляли на порядки больше энергии, набор возможностей был тоже несравним (адресуемая память, система команд и т.п.). Цена тоже была совсем другая – микропроцессоры для ПК и серверов стандартно стоили минимум полтинник (а обычно – сотни) долларов, когда встроенные микропроцессоры обычно шли по доллару-два а то и дешевле. Т.е. сравнивать эти классы напрямую было дело бессмыссленное – слишком они разные.

Что интересно, деление на эти классы в общем мало зависит от процессорной архитектуры – мало кто знает, но во многих ранних наладонниках и смартфонах (вроде Нокии 9000) стояли интеловские i386 – но специальные, очень мало-потребляющие.

Но со временем интел потерял интерес ко встроенным процессорам и сосредоточился на ПК и серверах, а лицензиаты АРМа заняли рынок встроенных процессоров. Довольно долго интел делал АРМ тоже (для встроенных применений), но они вышли из этого бизнеса – маржа маленькая.

Все изменилось в последние несколько лет, из-за появления таблетов. Поначалу эппл позиционировал таблеты как такие специализированные устройства, для потребления контента. Но довольно быстро выяснилось что народ пользуется таблетами просто как мобильными компьютерами – и веб браузит, и почту читает, и в игры играют, и с документами пытаются работать – докупают клавиатуру и работают.

Это в общем понятно – таблет – это обычный компьютер, просто оптимизированный для мобильности (малый вес) и без клавиатуры. Фактически – тот же нетбук, просто с хорошим экраном и без клавиатуры.
А с появлением таблетов на андроиде пошла обычная гонка – у кого быстрей процессор, больше памяти, лучше экран и т.п.

Да и андроидные производители особо и не пытаются делать вид что это не-ПК – уже появились андроидные нетбуки (тот же таблет, только с клавиатурой и в стандартном лэптоповом корпусе) на АРМе, и вышел гугль хром лэптом на АРМовском процессоре.

Для роста скорости АРМ процессоры начали потреблять все больше и больше – самсунг Exynos 5 (который стоит в хромбуке и в нексус 10) потребляет 4 ватта (два ватта на ядро), иПад 4 судя по размеру батареи потребляет похоже.
С другой стороны интел активно работал над понижением потребления своих процессоров, и в принципе уже вышел на сравнимые уровни потребления. Новые малопотребляющие Ivy Bridge которые интел показал на прошлой неделе (и уже поставляет Леново и другим) – потребляет 7 ватт, что всего в два раза больше чем Exynos 5.
(есть некоторые нюансы с методологией измерения TDP, но у Exynos тоже с этим не все гладко – так что сравнивать вполне можно)

Плюс интеловский Clover Trail (новый атом который уже пару месяцев шипается) потребляет всего 1.8 ватт, что даже меньше чем у новых АРМ.

Бенчмарк

Учитывая сравнимое энергопотребление интела и АРМ имеет смысл прямо сравнить производительность процессоров. Что я и сделал.

Для сравнения процессоров есть отличный тест – linpack.  Это очень распространенный и стабильный тест, он меряет производительность процессора на операциях с плавающей точкой. Хотя это и не на 100% отражает реальные программы (бывают программы которые плавающую точку не используют а больше зависят от целочисленной арифметики и простых команд), но в общем этот тест довольно точный и обьективный. И что важно – linpack есть для практически любых платформ – для андроида, для ипада, для винды, линукса и т.п. Так что можно надежно сравнивать не глядя на вид ОС или какой там браузер.

Поскольку у меня есть и ипад/ифон, и таблет на интеловском Clover Trail, и обычные лаптопы-десктопы, то я просто загрузил линпак и прогнал серию тестов. Кроме того я поискал на интернете linpack результаты для разных платформ (линпак стандартный, результаты легко сравнивать).

Для ифона-ипада:

Эта табличка из хорошего ревью (http://www.barefeats.com/ipad402.html) от ребят с barefeats, но у меня результаты для ипада получились очень похожие (разница в пределах 5%). Удобно что ребята с barefeats протестировали все версии ипада и сделали табличку (выше).

Что видно из этой таблички. иПад 1 был очень медленный, иПад 2 и 3 в общем-то очень похожи, иПад мини – это фактически иПад 2 только с меньшим размером экрана, а у иПада 4 – очень приличный рывок в скорости. Новый процессор в иПад 4 в 4 раза (!) быстрей иПада 3.

У иФона 5 результат (чуть ниже 600 мегафлопс) очень похож на иПад 4, что неудивительно – процессор одинаковый, только слегка дефорсированный (батарея ведь меньше). http://barefeats.com/iph502.html

Андроидных девайсов у меня сейчас под руками нет, но на интернете линпаковские результаты доступны. Например:

Нексус 10 наверное один из самых быстрых андроидных таблетов т.к. использует новейший Exynos 5 процессор, на линпак выдает 186.99 мегафлопс. Остальные андроиды заметно медленней. Я видел еще несколько статей где утверждалось что этот процессор может выдать 200 мегафлопс, что похоже.

Интеловские результаты

У интел Clover Trail (новый атом) результат – 591.5 мегафлопс. На интернете результатов я не нашел, мерял сам. Мерялось интеловским линпаком: http://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download/

По сравнению с иПадом и Андроидами – интел явно быстрей иПада 3 и всех андроидов, но медленней иПада 4. Это совпадает с моими ощущениями как юзера – асер w510 на атоме по ощущениям быстрей иПада 3 но медленней иПада 4, что совпадает с результатами линпака. Интересно что атом гораздо ближе к иПаду 4 – 591 мегафлопс vs 681 у иПада 4, тогда как у иПада 3 – 152 мегафлопса.

Десктопные процессоры

А теперь давайте посмотрим на производительность десктопных процессоров, просто чтобы понять какой уровень производительности нормальный для интела.

Первый тест – довольно старый (два года) лэптоп HP EliteBook с процессором i7-640M. Это маленький лэптоп (экран 12 дюймов) и процессор там ультрамалопотребляющий. Производительность по линпак – 7.8 гигафлопс. Это в 11 (!) раз быстрей иПада 4. И это процессор предыдущего поколения.

Второй тест – относительно новый Lenovo w520 c i7-2760QM процессором. Это довольно серьезная машинка, хотя и ноутбук. Производительность по линпак – 24 гигафлопса. Это в 35 (!!) раз быстрей иПада 4, и еще в несколько раз быстрей нексус 10 и других андроидов.

Третий тест – десктоп с интел 3960X. Это high-end процессор, но не самый новый. И не сервер – это десктопный процессор. Я сам тест на нем не гонял (поленился), но результаты есть на интернете: http://www.brightsideofnews.com/news/2011/11/14/review-intel-core-i7-3960x-and-intel-x79-dx79si.aspx?pageid=5

Результат – 65 гигафлопов, это в 95 раз (!!!) быстрей чем ипад.

Анализ

Лэптопы/ультрабуки и таблеты сливаются в некую общую категорию, и разницы между ультрабуком и таблетов в общем-то нет – просто у одного есть клавиатура, а у другого нет. Уже появилось довольно много трансформеров у которых клавиатура пристегивается – можно использовать как таблет, а можно и как маленький лэптоп.

Из-за этого четкой границы между процессорами для таблетов и процессорами для лэптопов/ультрабуков/нетбуков нет. И интел, и АРМы будут применяться и в таблетах, и в нетбуках, и в лэптопах – это собственно уже происходит.

И в этом соревновании у интела шансы явно лучше – быстрые лэптопные процессоры уже быстрей любого АРМа в десятки раз, и шансов у АРМа догнать интел – практически нет. До недавнего времени АРМ спасало то что интел просто не делал малопотребляющих процессоров, и эта ниша была совершенно свободна. Но сейчас интел явно осознал величину проблемы и явно закроет это окно в течении 2013. Собственно, уже сегодня интел выдает совсем неплохие процессоры для малопотребляющих девайсов (тот же Clover Trail), а через 6-9 месяцев интел будет бить АРМ даже на малопотребляющем сегменте.

Что еще важно – в гонке на производительность которая развернулась в таблетах и из-за расширения андроида/гуглехрома в лэптопы производители разгоняют АРМ процессоры, и соответственно растет потребление – и это загоняет АРМ процессоры в территорию где интел уже чувствует себя комфортно прямо сегодня, и просто приближает неизбежное.

Что интересно, большинство производителей железа все прекрасно понимают, и ставят сразу на несколько лошадей – они делают и АРМовские таблеты, и интеловские. АРМ дал им некоторые тактические преимущества в 2011/2012, а интел будет их основной платформой в 2013-2014 и дальше.

Просто как наблюдение – глядя на сиротские результаты иПадов (до 4) на линпаке, становится понятна нелюбовь Джобса к флэшу. По меркам стандартных лэптопов иПад – очень медленный аппарат, и флэшевые сайты на нем будут работать ужастно. Единственный способ добиться хорошей скорости на иПаде – писать на низкоуровневом языке (вроде C), иначе будет труба. Кроме того, наличие флэша сделало бы иПад легкосравниваемым по производительности со стандартными лэптопами, а так – попробуй сравни. Программы разные, код разный, напрямую сравнить тяжело. В общем, он хорошо понимал зачем это все. И кроме того, Джобсу очень хотелось контролировать весь софт на иФоне-иПаде – жадный он очень. Но думаю что он говорил правду – дело было в первую очередь в уебищной производительности процессора иФона-иПада.

Выводы

АРМу – трындец, причем очень скоро.

Что кстати совсем не значит трындец андроиду – андроид прекрасно работает и на x86. Просто в мире x86 и полу-таблетов полу-лэптопов у андроида начинаются большие проблемы из-за наличия винды.

А вот у эппла могут начаться самые настоящие неприятности. В отличии от андроида, программы для iOS написаны на Objective C (С с некоторыми расширениями), и для переноса на другую платформу придется сильно попотеть – практически заменить процессор в иПаде/иФоне эппл не может. Андроид – может, т.к. там программы написаны на джаве и без особых проблем работают на чем угодно.

В общем, этот год будет очень интересным.

P.S. Как совершенно справедливо указал в комментах goalinternet, проблемы грозят АРМу в таблетах (и смартфонах). АРМ во встроенных девайсах (контроллеры всякие) будет ОК, т.к. интел туда не пойдет (там цены маленькие).

nikitayev.livejournal.com

ARM выпустила процессоры нового поколения, которые ускорят искусственный интеллект в 50 раз

Интеграция Техника

, Текст: Владимир Бахур

ARM представила два первых процессорных ядра Cortex-A75 и Cortex-A55 с новой архитектурой DynamIQ, а также новую графику ARM Mali-G72. Компания обещает 50-кратный рост производительности в области ИИ и универсальность использования – от смартфонов до серверов.

Первые процессоры нового поколения

Компания ARM, ведущий мировой разработчик процессоров для мобильных устройств, представила два первых процессорных ядра Cortex-A75 и Cortex-A55 на базе новой мультиядерной процессорной микроархитектуры DynamIQ, которая на ближайшие годы станет основой всех новых процессоров семейства Cortex-A.

Новая микроархитектура DynamIQ, впервые представленная компанией в марте 2017 г., пришла на смену предыдущей технологии big.LITTLE, впервые представленной ARM в 2011 году и успешно зарекомендовавшей себя за пять с лишним лет. В ARM отмечают, что DynamIQ является дальнейшим эволюционным развитием идей и технологий big.LITTLE.

По словам представителей ARM, новые процессорные ядра Cortex-A75 и Cortex-A55 с технологией DynamIQ обеспечат оптимизацию для 50-кратного повышения производительности вычислений в области искусственного интеллекта в течение следующих трех-пяти лет, и 10-кратное увеличение производительности с применением интегрированных аппаратных акселераторов.

Новые процессорные ядра ARM Cortex-A75 и Cortex-A55

В ARM подчеркивают, что в отличие от прежнего позиционирования своих вычислительных ядер для определенных узких рынков – например, для мобильных устройств, с выпуском микроархитектуры DynamIQ компания начинает переход к гибкой универсальной платформе с огромными возможностями масштабирования, поддерживающей интеллектуальные решения для практически любых применений, от облаков и сетей до гаджетов.

Нандан Найямпали (Nandan Nayampally), глава ARM Compute Products Group, отметил: «По мере усложнения вычислительных систем, нам необходимо переосмысление мультипроцессорной обработки данных. Это означает не только гибкую обработку данных в CPU, но также совершенствование и интеграцию гетерогенных вычислений в виде, более близком к разнообразным, дифференцированным решениям. С новой архитектурой вы можете настраивать производительность как на уровне кластеров, так и отдельных процессорных ядер, устанавливая для каждого подходящий уровень производительности и характеристик потребления энергии».

DynamIQ выводит возможности big.LITTLE на новый уровень

Вместе с первыми процессорными ядрами Cortex-A на платформе DynamIQ компания также представила новое графическое ядро ARM Mali-G72. Список улучшений новой графики включает расширенную поддержку игровых и VR-технологий, а также специфические возможности в области машинного обучения.

Новая графика ARM Mali-G72

Графика ARM Mali-G72 ориентирована на использование в мобильных устройствах премиального сегмента и обещает увеличение производительности на 40% по сравнению с предыдущим поколением.

Обновленное семейство процессорных ядер Cortex-A: что нового

Процессорная технология DynamIQ унаследовала от архитектуры предыдущего поколения ARM big.LITTLE проверенную временем организацию вычислительных мощностей – когда экономичные процессорные ядра сочетаются в одном кристалле с несколькими высокоэффективными ядрами. Это позволяет сконструировать мобильный процессор, способный при необходимости значительно наращивать производительность, и экономить заряд батареи мобильного устройства в остальное время.

Особенности архитектуры новых процессорных ядер Cortex-A

Развивая идею «правильный процессор для правильной задачи», архитектура DynamIQ поддерживает до 8 процессорных ядер на один вычислительный кластер, при этом кластеров в финальном чипе может быть практически бесконечно много.

Каждый вычислительный кластер, в свою очередь, обеспечивает определенный уровень производительности. В отличие от традиций big.LITTLE, где использовалось только попарное ускорение мощных и экономичных ядер (2+2, 2+4, 4+4 и т.п.), архитектура DynamIQ может работать с любыми сочетаниями экономичных и мощных ядер – от 1+3 или 1+7 до любых других.

Более гибкая работа вычислительных кластеров нового типа

Благодаря микроархитектуре DynamIQ, каждое ядро кластера может иметь различные показатели производительности и энергопотребления. Новая архитектура DynamIQ также поддерживает ряд новых инструкций, оптимизированных для ускорения процесса машинного обучения и для работы с приложениями искусственного интеллекта.

Специфика микроархитектуры DynamIQ

Дополнительную гибкость новой вычислительной архитектуре придает переделанная подсистема памяти, которая обеспечивает более быстрый доступ к данным при одновременном снижении энергопотребления. 

Архитектура DynamIQ способна обеспечить низкое энергопотребление благодаря быстрому переключению между различными уровнями состояния и точному управлению уровнями производительности.

Особенности ARM Cortex-A75

Производительное процессорное ядро ARM Cortex-A75 обеспечивает значительный прирост производительности и энергоэффективности по сравнению со своими предшественниками Cortex-A72 и Cortex-A73. Чип обладает улучшенной примерно на 20% производительностью при работе с целыми числами, значительными улучшениями при работе с числами с плавающей запятой и задачами с большой нагрузкой на подсистему памяти. 

Для процессора Cortex-A75 характерна пиковая производительность при однопоточных нагрузках благодаря наличию симметричного трехстороннего суперскалярного конвейера варьируемой длины с полностью произвольной (out-of-order) выборкой команд. 

Ядра Cortex-A75 обладают распределенным кластером кэша L3, поддержкой асинхронных частот и практически независимых напряжений питания для различных ядер внутри многоядерного процессора или кластера. Ядра Cortex-A75 также оснащены отдельной кэш-памятью L2 на каждое ядро с уменьшенной вдвое латентностью по сравнению со своими предшественниками.

В сочетании с распределенным модулем DynamIQ (DynamIQ Shared Unit, DSU), процессор Cortex-A75 позволяет обеспечить необходимый уровень производительности для широкого спектра системы и рынков – от смартфонов и умных домов до серверов и автомобильной электроники.

Благодаря базовому исполнению на уровне микроархитектуры ARMv8-A, вычислительные ядра Cortex-A75 обладают полной обратной совместимостью со всей экосистемой операционных систем, инструментов и приложений, разработанных для этой платформы, обеспечивая в то же время новые возможности для разработчиков систем с искусственным интеллектом. 

Особенности ARM Cortex-A55

Экономичное процессорное ядро ARM Cortex-A55, по данным компании, обеспечивает лучшее в серии сочетание энергоэффективности и производительности в своем классе. Чип также базируется на технологиях DynamIQ и архитектуре ARMv8-A с поддержкой самых последних ее расширений в области машинного обучения. 

Ядро Cortex-A55 обеспечивает на 18% лучшую производительность при работе с целыми числами, на 20% с числами с плавающей запятой, на 40% при расчетах NEON SIMD, на 15% при работе с JavaScript и на 200% при расчетах с большой нагрузкой на память при уменьшенном на 15% потреблении энергии по сравнению со своим предшественником Cortex-A53. 

Ядро Cortex-A55 также обладает интегрированным конфигурируемым кэшем L2 на каждое ядро с более чем на 50% сниженной латентностью при обращении к подсистеме памяти. Ядра Cortex-A55 поддерживают кэш-память L3, распределяемой на кластер из 8 ядер. 

На горизонте – новый мобильный флагман Qualcomm Snapdragon 845

В Сети уже появилась информация о том, что в Qualcomm работают над созданием следующего за Snapdragon 835 нового флагманского 8-ядерного процессора Snapdragon 845, выполненного на представленных сегодня ядрах Cortex-A75 и Cortex-A55. По аналогии с чипом Snapdragon 835, новый Snapdragon 845 также будет производиться с нормами 10-нм техпроцесса.

Для Snapdragon 845 ожидается рост производительности примерно на 30% при однопоточных вычислениях и ориентировочно на 70% при мультипоточных вычислениях. 

Сроки официального анонса чипа Snapdragon 845 пока не известны, но аналитики прогнозируют это событие на конец 2017 г. 

Первые смартфоны на DynamIQ: уже в 2018

По данным ARM, компания в последние четыре года поставила своим партнерам порядка 50 млрд 64-битных чипов, и в следующие пять лет планирует как минимум удвоить это число. Ожидается, что большинство из этих 100 млрд чипов, которые компания планирует поставить до 2021 года, будут ARM-ядрами на основе Dynamiq или из экономичных семейств Cortex-R и Cortext-M. 

Планы ARM и партнеров по выпуску нового поколения смартфонов

Согласно заявлению ARM, компания работает с «многочисленными партнерами» над практическим внедрением технологий DynamIQ. По мнению представителей руководства ARM, микроархитектура Dynamiq может появиться во множестве различных смартфонов в ближайшие два года.



www.cnews.ru

Рейтинг мобильных процессоров

Особенностью мобильных процессоров является их способность функционировать на одной аккумуляторной батареи с минимальным нагревом корпуса. Но нередко бывает так, что чип показывает высокую производительность, но очень быстро разряжает аккумулятор. И наоборот, производительность может быть чуть ниже, но при этом возрастает энергоэффективность. Поэтому судить о преимуществе одного чипа над другим не всегда актуально. Мобильные процессоры построены по многоядерной архитектуре. Наличие большего количества ядер увеличивает количество выполняемых задач одновременно, при условии оптимизации программного обеспечения.

В данной статье представлен рейтинг мобильных процессоров в порядке возрастания производительности.

10. Intel Atom Z3775D

Intel Atom Z3775D открывает десятку лучших мобильных процессоров по производительности. Четырёхъядерный чип рассчитан на планшеты под управлением Android и Windows. Z3775D принадлежит к семейству Bay Trail-T. Благодаря четырехъядерному процессору, работающему на частоте от 1.46 до 2.39 ГГц, Z3775 значительно быстрее, чем предыдущий процессор Intel Atom Z2760.

9. Intel Atom Z3775

Девятое место занял четырехъядерный процессор с частотой 1.46-2.39 ГГц Intel Atom Z3775, предназначенный для смартфонов. Оптимизированный 22 нанометровый процесс Р1271 с транзисторами tri-gate демонстрирует повышенное быстродействие и энергоэффективность по сравнению с предыдущим Atom Z2770.

8. Intel Atom Z3785

Четырёхъядерный мобильный процессор для планшетов и смартфонов на Anroid и Windows Intel Atom Z3785 занял восьмую позицию по производительности. SoC, работающий на частоте от 1,49 до 2,41 ГГц, построен на части платформы Bay Trail-T. Благодаря оптимизированному 22-нм процессу в комплексе с tri-gate транзисторами улучшилась производительность и энергосбережение по сравнению с предыдущим поколением. Процессорные ядра, построенные на архитектуре Silvermont показывают производительность на 50% выше, благодаря использованию пайплайна, оптимизации модуля предсказания ветвлений, расширению декодеров и увеличению буфера.

7. Intel Atom Z3795

На шестом месте расположился процессор, предназначенный для планшетов Windows и Android, Intel Atom Z3795. Четырёхъядерный чип работает на частоте от 1.59 до 2.39 ГГц. Оптимизированный 22-нм технологический процессор  с использованием транзисторов Tri-Gate улучшил быстродействие и снизил энергопотребление по сравнению с предыдущей серией Atom. Производительность Z3795 рассчитана в основном на работу с офисным приложением и браузером, поэтому для ресурсоёмких задач её не хватит.

6. Qualcomm Snapdragon 808 MSM8992

Мобильный процессор Qualcomm Snapdragon 808 MSM8992, специально разработанный для планшетных устройств и смартфонов на базе Android, имеет 6 процессорных ядер,  видеокарту Adreno 418 с 2×32-битным контроллером памяти LPDDR3-1866, Bluetooth 4.1, UMTS и LTE. Основанный на ARM big.LITTLE, которая комбинирует различные процессорные ядра для оптимального сочетания производительности и энергопотребления, 808 MSM8992 объединяет два быстрых ядра Cortex-A57 с тактовой частотой до 2 ГГц, с производительностью на 30% выше, чем у предыдущего процессора из этой серии.

5. Qualcomm Snapdragon 810 MSM8994

Быстрый восьмиядерный процессор Qualcomm Snapdragon 810 MSM8994, предназначенный для планшетов и смартфонов, произведён по 28-нм техпроцессу. Он использует две группы 64-битных вычислительных ядер с архитектурой Cortex-A57 и Cortex-A53. При необходимости все ядра Snapdragon 810 могут работать одновременно. Здесь есть графический ускоритель Adreno 430, двухканальный контроллер памяти LPDDR4, модули Wi-Fi (802.11ac + MIMO), Bluetooth 4.1, 3G и LTE. Ускоритель Adreno 430 способен справиться с любыми играми в разрешении  Full-HD и выше.

4. Intel Atom x7-Z8700

Мобильный процессор Intel Atom x7-Z8700, представленный в 2015году, использует четыре вычислительных ядра Cherry Trail. Если сравнивать с более ранними процессорами из этой серии, то у нового Intel Atom x7-Z8700 есть ряд безусловных преимуществ. Отлаженная архитектура, 14-нм технологический процесс с тактовой частотой 2,4 Ггц разрешает добиться высокой производительности при сохранении низкого тепловыделения. Сюда встроен контроллер памяти LPDDR3-1600 и графический адаптер HD Graphics (Cherry Trail), который поддерживает DirectX 11.2 и задействует 16 вычислительных блоков (шейдеров) с частотой в пределах 600 МГц. Atom x7-Z8700 можно использовать как для ноутбуков и планшетов, так и для смартфонов.

3. ARMv8 Apple A9

На третьем месте в списке расположился 64-битный двухъядерный ARM-микропроцессор с архитектурой ARMv8 Apple A9. Он изготовлен по14-нм FinFET техпроцессу. Чип A9, представляющий собой 2-ядерную SoC, с частотой 1,8 ГГц, получил прирост производительности до 70 % в целом и порядка 90 % по графике по сравнению с предыдущим поколением чипов (Apple A8). Энергопотребление чипа снижено на 35 % и его размеры уменьшились на 15 %.

2. Samsung Exynos 7420 Octa

На втором месте расположился Samsung Exynos 7420 Octa. Мобильный процессор был представлен в 2015 году с устройством Samsung Galaxy S6. 7420 Octa использует восемь вычислительных ядер согласно архитектуре big.LITTLE. Общая производительность достаточно высока и его можно сравнить с Snapdragon 810 от Qualcomm или Tegra K1 от Nvidia. Производство по нормам 14-нанометрового технологического процесса позволяет также снизить энергопотребление на фоне более ранних разработок (20 нм либо 28 нм). Как полноценная система-на-чипе (SoC), Exynos 7420 Octa задействует также множество дополнительных компонентов, включая графический ускоритель ARM Mali-T760 MP8, контроллер быстрой памяти LPDDR4 и различные коммуникационные модули.

1. Apple A9X

Apple A9X от компании Apple возглавляет рейтинг лучших мобильных процессоров. Он изготовлен по техпроцессу 16-нм FinFET на заводах TSMC. Процессорное ядро «Twister» представляет собой третье поколение 64-битных ARM-ядер, которые работают на частотах до 2,26 ГГц. По сравнению с чипом Apple A8X, в два раза была увеличена пропускная способность памяти. По заявлению Apple, новый чип имеет в 1.8 раза более высокую производительность в офисных задачах, чем A8X, использовавшийся в частности в iPad Air 2. Площадь чипа по оценкам Chipworks составляет 147 мм2. Используется встроенный 3D-ускоритель PowerVR Series7 с 12 кластерами. Память LPDDR4 подключается к системе по шине шириной 128 бит, суммарная пропускная способность оценивается в 51,2 ГБ/с. Чип содержит в себе сопроцессор M9 для обработки данных с датчиков.

top10a.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *