Расчет конденсатора: Расчёт ёмкости конденсатора онлайн / Калькулятор / Элек.ру

Автор: | 23.01.1970

Содержание

Расчет емкости конденсатора для трехфазного двигателя

При подключении асинхронного трехфазного электродвигателя на 380 В в однофазную сеть на 220 В необходимо рассчитать емкость фазосдвигающего конденсатора, точнее двух конденсаторов — рабочего и пускового конденсатора. Онлайн калькулятор для расчета емкости конденсатора для трехфазного двигателя в конце статьи.

Как подключить асинхронный двигатель?

Подключение асинхронного двигателя осуществляется по двум схемам: треугольник (эффективнее для 220 В) и звезда (эффективнее для 380 В).

На картинке внизу статьи вы увидите обе эти схемы подключения. Здесь, я думаю, описывать подключение не стоит, т.к. это описано уже тысячу раз в Интернете.

Во основном, у многих возникает вопрос, какие нужны емкости рабочего и пускового конденсаторов.

Пусковой конденсатор

Ознакомьтесь также с этими статьями

Стоит отметить, что на небольших электродвигателях, используемых для бытовых нужд, например, для электроточила на 200-400 Вт, можно не использовать пусковой конденсатор, а обойтись одним рабочим конденсатором, я так делал уже не раз — рабочего конденсатора вполне хватает.

Другое дело, если электродвигатель стартует со значительной нагрузкой, то тогда лучше использовать и пусковой конденсатор, который подключается параллельно рабочему конденсатору нажатием и удержанием кнопки на время разгона электродвигателя, либо с помощью специального реле. Расчет емкости пускового конденсатора осуществляется путем умножения емкостей рабочего конденсатора на 2-2.5, в данном калькуляторе используется 2.5.

При этом стоит помнить, что по мере разгона асинхронному двигателю требуется меньшая емкость конденсатора, т.е. не стоит оставлять подключенным пусковой конденсатор на все время работы, т.к. большая емкость на высоких оборотах вызовет перегрев и выход из строя электродвигателя.

Как подобрать конденсатор для трехфазного двигателя?

Конденсатор используется неполярный, на напряжение не менее 400 В. Либо современный, специально на это рассчитанный (3-й рисунок), либо советский типа МБГЧ, МБГО и т.п. (рис.4).

Итак, для расчета емкостей пускового и рабочего конденсаторов для асинхронного электродвигателя введите данные в форму ниже, эти данные вы найдете на шильдике электродвигателя, если данные неизвестны, то для расчета конденсатора можно использовать средние данные, которые подставлены в форму по умолчанию, но мощность электродвигателя нужно указать обязательно.

Онлайн калькулятор расчета емкости конденсатора

Советуем к прочтению другие наши статьи

Расчет емкости конденсатора22:

 

Как подобрать конденсатор для однофазного электродвигателя или трехфазного

Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения (например, трехфазный двигатель к однофазной сети)? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию (сверлильному или наждачному станку и пр.). В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать.

Что такое конденсатор

Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.

Существует три вида конденсаторов:

  • Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т.к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
  • Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
  • Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).

Как подобрать конденсатор для трехфазного электродвигателя

Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

  • k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
  • Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
  • U сети – напряжение питания сети, т. е. 220 вольт.

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

Как подобрать конденсатор для однофазного электродвигателя

Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт. Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.

Итак, как подобрать конденсатор для однофазного электродвигателя?

Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Есть несколько режимов работы двигателей подобного типа:

  • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
  • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
  • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).

Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.


Расчет конденсатора для трехфазного двигателя в однофазной сети

Для включения трехфазного электродвигателя (что такое электродвигатель ➠) в однофазную сеть обмотки статора могут быть соединены в звезду или треугольник.

Напряжение сети подводят к началам двух фаз. К началу третьей фазы и одному из зажимов сети присоединяют рабочий конденсатор 1 и отключаемый (пусковой) конденсатор 2, который необходим для увеличения пускового момента.

Пусковая емкость конденсаторов

Сп = Ср + Со,

где Ср — рабочая емкость,
Со — отключаемая емкость.

После пуска двигателя конденсатор 2 отключают.

Рабочую емкость конденсаторного двигателя для частоты 50 Гц определяют по формулам:

для схемы на рис. а: Ср = 2800 Iном / U;
для схемы на рис. б: Ср = 4800 Iном / U;
для схемы на рис. в: Ср = 1600 Iном / U;
для схемы на рис. г: Ср

= 2740 Iном / U,

где Ср — рабочая емкость при номинальной нагрузке, мкФ;
Iном — номинальный ток фазы двигателя, А;
U — напряжение сети, В.

Нагрузка двигателя с конденсатором не должна превышать 65—85% номинальной мощности, указанной на щитке трехфазного двигателя.

Если пуск двигателя происходит без нагрузки, то пусковая емкость не требуется — рабочая емкость будет в то же время пусковой. В этом случае схема включения упрощается.

При пуске двигателя под нагрузкой, близкой к номинальному моменту необходимо иметь пусковую емкость С

п = (2,5 ÷ 3) Ср.

Выбор конденсаторов по номинальному напряжению производят по соотношениям:

для схемы на рис. а, б: Uк = 1,15 U;
для схемы на рис. в: Uк = 2,2 U;
для схемы на рис. г: Uк = 1,3 U,

где Uк и U — напряжения на конденсаторе и в сети.

Купить конденсаторы для запуска двигателя:
CBB60 3/4/5/6/10/12/14/16 мкФ 500 В;
CBB60 20 мкФ 450 В;
CBB60 25 мкФ 450 В;
CBB60 35 мкФ 450 В;
CBB60 50 мкФ 450 В;
CBB60 60 мкФ 450 В;
CBB60 80 мкФ 450 В;
CD60 100 мкФ 450 В;
CBB60 120 мкФ 450 В.

Основные технические данные некоторых конденсаторов приведены в таблице.

Если трехфазный электродвигатель, включенный в однофазную сеть, не достигает номинальной частоты вращения, а застревает на малой скорости, следует увеличить сопротивление клетки ротора проточкой короткозамыкающих колец или увеличить воздушный зазор шлифовкой ротора на 15—20%.

В том случае, если конденсаторы отсутствуют, можно использовать резисторы, которые включаются по тем же схемам, что и при конденсаторном пуске. Резисторы включаются вместо пусковых конденсаторов (рабочие конденсаторы отсутствуют).

Сопротивление (Ом) резистора может быть определено по формуле

,

где R — сопротивление резистора;
κ и I— кратность пускового тока и линейный ток в трехфазном режиме.

Пример расчета рабочей емкости конденсатора для двигателя

Определить рабочую емкость для двигателя АО 31/2, 0.6 кВт, 127/220 В, 4.2/2.4 А, если двигатель включен по схеме, изображенной на рис. а, а напряжение сети равно 220 В. Пуск двигателя без нагрузки.

Решение

1. Рабочая емкость Ср = 2800 x 2.4 / 220 ≈ 30 мкФ.

2. Напряжение на конденсаторе при выбранной схеме Uк = 1,15 x U = 1,15 x 220 = 253 В.

По таблице выбираем три конденсатора МБГО-2 по 10 мкФ каждый с рабочим напряжением 300 В. Конденсаторы включать параллельно.

Источник: В.И. Дьяков. Типовые расчеты по электрооборудованию.

Видео о том, как подключить электродвигатель на 220 вольт:

Помощь студентам

Определение емкостей фазосдвигающих конденсаторов. Рабочий и пусковой конденсаторы

Самый простой способ включения трехфазного электродвигателя в однофазную сеть, это с помощью одного фазосдвигающего конденсатора. В качестве такого конденсатора нужно использовать только неполярные конденсаторы, а не полевые (электролитические).

Фазосдвигающий конденсатор.

При подключении трехфазного электродвигателя к трехфазной сети пуск обеспечивается за счет переменного магнитного поля. А при подключении двигателя к однофазной сети достаточный сдвиг магнитного поля не создается, поэтому нужно использовать фазосдвигающий конденсатор.

Емкость фазосдвигающего конденсатора нужно рассчитать так:

  • для соединения «треугольником»: Сф=4800•I/U;
  • для соединения «звездой»: Сф=2800•I/U.

Об этих типах соединения можно подробнее ознакомиться тут: 

В этих формулах: Сф – емкость фазосдвигающего конденсатора, мкФ; I– номинальный ток, А; U– напряжение сети, В.

Номинальный ток, тоже можно высчитать, так: I=P/(1,73•U•n•cosф).

В этой формуле такие сокращения: P – мощность электродвигателя, обязательно в кВт; cosф – коэффициент мощности; n – КПД двигателя.

Коэффициент мощности или смещения тока к напряжению, а также КПД электродвигателя указывается в паспорте или в табличке (шильдике) на двигателе. Значения эти двух показателей часто бывают одинаковыми и чаще всего равны 0,8-0,9.

Грубо можно определить емкость фазосдвигающего конденсатора так: Сф=70•P. Получается так, что на каждые 100 Вт нужно по 7мкФ емкости конденсатора, но это не точно.

В конечном итоге правильность определения емкости конденсатора покажет работа электродвигателя. Если двигатель не будет запускаться, значит, емкости мало. В случае, когда двигатель при работе сильно нагревается, значит, емкости много.

Рабочий конденсатор.

Найденной по предложенным формулам емкости фазосдвигающего конденсатора достаточно только для пуска трехфазного электродвигателя, не нагруженного. То есть, когда на валу двигателя нет никаких механических передач.

Рассчитанный конденсатор будет обеспечивать работу электродвигателя и когда он выйдет на рабочие обороты, поэтому такой конденсатор еще называется рабочим.

Пусковой конденсатор.

Ранее было сказано, что ненагруженный электродвигатель, то есть небольшой вентилятор, шлифовальный станок можно запустить от одного фазосдвигающего конденсатора. А вот, запустить сверлильный станок, циркулярную пилу, водяной насос уже не получиться запустить от одного конденсатора.

Чтобы запустить нагруженный электродвигатель нужно к имеющемуся фазосдвигающему конденсатору кратковременно добавить емкости. А конкретно, нужно уже к подсоединенному рабочему конденсатору подключить параллельно еще один фазосдвигающий конденсатор. Но только на короткое время на 2 – 3 секунды. Потому что когда электродвигатель наберет высокие обороты, через обмотку, к торой подключены два фазосдвигающих конденсатора, будет протекать завышенный ток. Большой ток нагреет обмотку электродвигателя, и разрушит ее изоляцию.

Подключенный дополнительно и параллельно конденсатор к уже имеющемуся фазосдвигающему (рабочему) конденсатору называется пусковым.

Для слабонагруженных электродвигателей вентиляторов, циркулярных пил, сверлильных станков емкость пускового конденсатора выбирается равной емкости рабочего конденсатора.

Для нагруженных двигателей водяных насосов, циркулярных пил нужно выбирать емкость пускового конденсатора в два раза больше, чем у рабочего.

Очень удобно, для точного подбора нужных емкостей фазосдвигающих конденсаторов (рабочего и пускового) собрать батарею параллельно соединенных конденсаторов. Конденсаторы соединенные вместе нужно взять небольшими емкостями 2, 4, 10, 15 мкФ.

При выборе по напряжению любого конденсатора нужно пользоваться универсальным правилом. Напряжение, на которое конденсатор рассчитан должно быть в 1,5 раз выше того напряжения, куда он будет подключен.

Расчет электролитического конденсатора в сетевом выпрямителе



Расчет электролитического конденсатора в сетевом выпрямителе

Расчет сглаживающего конденсатора в сетевом выпрямителе.

Входной выпрямитель является неотъемлемым элементом большинства преобразователей, питающихся от переменного сетевого напряжения. После диодного моста напряжение на конденсаторе будет иметь вид пилы, верхняя точка которой равна амплитудному напряжению сети (минус падение напряжения на диодах моста, что несущественно для устройств, питающихся от 220В), а нижняя зависит от емкости конденсатора и тока потребления нагрузки выпрямителя. В этой статье приведен пример расчета емкости сглаживающего конденсатора выпрямителя. Более полная информация приведена в статье А.И. Колпакова.

 

В качестве примера приведен расчет конденсатора для реального преобразователя, разработка которого была доведена до практического воплощения,  Pвых=1200Вт (выходное напряжение 60В, ток 20А, КПД около 90%)

 

Исходные данные для расчета:

Uвх = 220В       (напряжение сети)

f = 50Гц             (частота сетевого напряжения)

Задаваемые параметры:

Umin =260В     (минимальное напряжение — задается минимальное значение пилообразного напряжения на конденсаторе)

Iнагр = 5.13А           (ток потребления нагрузки выпрямителя, если известна мощность нагрузки, то ток можно вычислить как I=Pвх/Uмин, в моем случае Pвх=Pвых/КПД, т.е I=(1200/0.9)/260=5.13А )

  1. Вычисляется время заряда конденсатора (в течение которого ток потребляется от сети). Так как напряжение изменяется по синусоидальному закону, используем для расчета формулу тригонометрии:

    t(зар) = (arccos(Umin/Umax))/(2*pi*f)

    Для синусоиды Umax = Uвх*1.41=220*1.41= 310 В (амплитудное сетевое напряжение), т.е.

    t(зар) = (arccos(260/310))/(2*3.141*50) = 0.00183 c

  2. Вычисляется время разряда конденсатора:

    t(раз) = T-t(зар)

    в двухполупериодном выпрямителе T = (1/f)/2 = 1/50/2=0.01с (частота сети в двухполупериодном выпрямителе удваивается)

    t(раз) = 0.01-0.00183 = 0.0082 с

  3. Находится емкость конденсатора, на которой за время t(раз) при токе нагрузки Iнагр напряжение с Umax уменьшится до Umin:

      C = Iнагр*dt/dU,

     в нашем случае dt это  t(раз), а dU является разница (Umax-Umin)

    C = 5. 13*0.0082/(310-260) = 0.00084Ф = 840 мкФ

  4. Находим пиковый зарядный ток:

    Ipic = C*dU/dt,

    где dU = Umax-Umin, а dt — это время заряда конденсатора, т.е. t(зар)

    Ipic = 0.00084*(310-260)/0.00183 = 23А

  5. Находим среднеквадратичное значение импульсного тока через конденсатор по формуле:

    Irms = √(I(зар)²+I(разр)²),

    где  I(зар)-среднеквадратичный ток через конденсатор на цикле заряда, а I(разр) — среднеквадратичный ток через конденсатор на цикле разряда.

    Считаем, что ток заряда конденсатора имеет треугольную форму, тогда

    I(зар) = Ipic*√((t(зар)/T)/3) = 23*√((0.00183/0.01)/3) = 5.7A

    На интервале разряда через конденсатор течет ток нагрузки, поэтому

    I(разр) = Iнагр*t(раз)/T = 5. 13*0.0082/0.01 = 4.2А

    Итак,  Irms = (5.7²+4.2²) = 7.1А

    Полученное  Irms используется при выборе конденсатора (для электролитических конденсаторов обычно указывается допустимое значение импульсного тока для частоты 100Гц). Если у выбранного конденсатора допустимое значение импульсного тока меньше, необходимо набирать конденсаторы с меньшей емкостью и соединять в параллель исходя из условия: суммарная емкость не меньше рассчитанной, а ток, приходящийся на каждый из конденсаторов (ток по конденсаторам с одинаковой емкостью разделится равномерно), не более допустимого.

     

Расхождение теоретического расчета с практикой.

В заключение скажу, насколько вышеизложенная теория разошлась с практикой, и решайте сами, стоит ли применять эту методику.

Суммарная реальная емкость конденсаторов в моем преобразователе составила 1020мкФ, при этом измеренные осциллографом параметры были следующие:

  • Umin   равнялось примерно 265-275В (близко к расчетному)

  • t(зар) составляло около 3мс (приличная погрешность — по расчету 1. 8мс, а учитывая, что емкость выше расчетной, должно быть еще меньше)

  • Ipic составило 21А (близко к расчетному)

Калькулятор импеданса конденсатора • Электротехнические и радиотехнические калькуляторы • Онлайн-конвертеры единиц измерения

Отметим, что величина импеданса идеального конденсатора равна его реактивному сопротивлению. Однако это не идентичные величины, так как между током и напряжением в емкостной цепи существует фазовый сдвиг. Для расчетов используются указанная ниже формула:

Здесь

XC — реактивное сопротивление конденсатора в омах (Ом) ,

ZLC — импеданс конденсатора в омах (Ом),

ω = 2πf — угловая частота в рад/с,

j — мнимая единица.

f — частота в герцах (Гц),

С — емкость в фарадах (Ф), и

Для расчета выберите единицы измерения и введите емкость и частоту. Импеданс конденсатора будет показан в омах.

График зависимости реактивного сопротивления конденсатора XC и текущего через него тока I от частоты f для нескольких величин емкости показывает обратную пропорциональную зависимость от частоты реактивного сопротивления

Конденсатор представляет собой пассивный электрический элемент с двумя выводами, состоящий, в основном, из двух электрических проводников, часто в форме тонких металлических пластин, разделенных диэлектриком, например, пластмассовой пленкой, керамикой, бумагой или даже воздухом. Конденсаторы используются для хранения энергии в форме электрического заряда.

Если незаряженный конденсатор подключить к источнику постоянного напряжения, он заряжается до приложенного напряжения и его зарядный ток экспоненциально уменьшается от максимального значения в начальной точке заряда до нуля. В то же время, напряжение на конденсаторе увеличивается до напряжения источника постоянного тока.

Таким образом, когда напряжение на конденсаторе становится максимальным, ток через него достигает минимума. Скорость изменения тока определяется постоянной времени цепи, в которую включен конденсатор. Полностью заряженный конденсатор блокирует ток и действует как временный накопитель энергии.

Идеальный конденсатор поддерживает полный заряд в течение неограниченно долгого времени даже в том случае, если отключить источник постоянного напряжения. Однако в реальной жизни конденсаторы, особенно электролитические, не могут хранить энергию постоянно, так как у них имеется относительно низкое сопротивление утечки и, следовательно, большой ток утечки.

Если к конденсатору приложить синусоидальное напряжение, он заряжается сначала в одном направлении, а затем в противоположном. Полярность его заряда изменяется со скоростью изменения переменного напряжения. Как уже упоминалось выше, когда напряжение достигает максимума, ток становится минимальным и когда напряжение достигает минимума, ток достигает максимума. Ток через конденсатор пропорционален скорости изменения напряжения, причем ток максимален, когда напряжение изменяется быстрее всего, а это происходит, когда синусоида напряжения пересекает нулевую точку. На рисунке показан график напряжения на конденсаторе, заряда на нем и протекающего через него тока выглядит.

В чисто емкостной цепи величина тока зависит от скорости изменения напряжения. Ток заряжает конденсатор и когда ток медленно понижается до нуля, конденсатор полностью заряжен и напряжение на нем достигает максимума. VC — напряжение, QC — заряд, IC — ток, φ = –90° = –π/2 — фазовый сдвиг. 1 — конденсатор начинает заряжаться, ток достиг положительного максимума, скорость его изменения нулевая и напряжение на конденсаторе, а также его заряд — нулевые; 2 — конденсатор полностью заряжен, ток через него равен нулю, скорость его изменения в этот момент максимальна, а напряжение на конденсаторе и его заряд в этот момент максимальны и положительны; 3 — конденсатор заряжается в противоположном направлении, ток через него достиг отрицательного максимума, скорость его изменения нулевая, напряжение и заряд конденсатора также нулевые; 4 — конденсатор полностью заряжен, ток через него нулевой, скорость его изменения максимальна, а заряд и напряжение на конденсаторе достигли своих отрицательных максимумов

Как мы видим, напряжение на конденсаторе отстает от тока в нем по времени и фазе на 90°, так ток должен течь достаточно долго, чтобы на конденсаторе возник заряд и, соответственно, возросло напряжение. Можно также сказать, что ток опережает напряжение. Величина этого опережения зависит от соотношения величин реактивного сопротивления и активного сопротивления в цепи. Если сопротивления в цепи нет, то отставание (опережение) будет на 90° (ток нулевой, когда напряжение максимально). Этот угол называется фазовым сдвигом.

Аналогичное явление можно наблюдать и в природе. Сравните: Солнце светит сильнее всего в астрономический полдень (солнечный свет — напряжение), однако самая жаркая часть дня обычно бывает через несколько часов после полудня (температура — ток). Или другой пример. День зимнего солнцестояния в северном полушарии (самый короткий день) — в конце декабря, однако самые холодные месяцы еще впереди. В зависимости от того, где вы живете, это будет январь или февраль. Вспомните поговорку «Солнце — на лето, зима — на мороз». Это как раз о поведении емкости, только в природной аналогии. Такой сезонный «сдвиг фаз» или отставание вызван поглощением энергии Солнца огромными массами воды в океанах. Они отдадут эту запасенную энергию, но позже — точно так же, как это делают конденсаторы.

День зимнего солнцестояния

Рассчитанный этим калькулятором импеданс представляет собой меру сопротивления конденсатора пропускаемому через него сигналу на определенной частоте. Емкостное реактивное сопротивление обратно пропорционально частоте приложенного переменного напряжения. Приведенные выше формула и график показывают, что реактивное сопротивление конденсатора XС мало при высоких частотах и велико при низких частотах (катушки индуктивности ведут себя с точностью до наоборот). При нулевой частоте (при постоянном напряжении) емкостное реактивное сопротивление становится бесконечно большим и прерывает протекающий ток. С другой стороны, при очень высоких частотах конденсатор проводит очень хорошо — отсюда правило, которое мы выучили в школе: конденсаторы не пропускают постоянный ток и пропускают переменный. Если частота очень высокая, конденсаторы пропускают сигнал очень хорошо.

Импеданс измеряется в омах, так же, как и сопротивление. Импеданс мешает прохождению электрического тока так же, как и сопротивление, и показывает как сильно конденсатор противодействует прохождению тока через него. Но тогда возникает вопрос: в чем же разница между импедансом и сопротивлением? А разница заключается в зависимости импеданса от частоты приложенного сигнала. Сопротивление от частоты не зависит, а импеданс конденсаторов от частоты зависит. С увеличением частоты импеданс конденсатора уменьшается и наоборот.

Этот калькулятор предназначен для расчета импеданса идеальных конденсаторов. Реальные конденсаторы всегда имеют некоторую индуктивность и сопротивление. Для расчета импеданса реальных конденсаторов пользуйтесь калькулятором импеданса RLС-цепей.

Конденсаторы советского производства, выпущенные в конце 60-х гг. прошлого века

Расчет емкости конденсатора: как вычислить формулой

Конденсаторы имеют широкое распространение в электрических сетях. Если разобрать несколько электронных приборов на детали и пересчитать их, то окажется, что конденсаторы используются гораздо чаще других элементов. Поэтому следует уделить особое внимание конструкции, расположению и принципу действия подобных деталей.

Что такое конденсатор?

Конденсатор состоит из двух проводящих пластин, расположенных очень близко друг к другу и разделённых диэлектриком. Применение постоянного напряжения к пластинам вызовет протекание тока и появление на обеих крышках одинаковых по модулю, но противоположных по знаку зарядов: отрицательных – на одной и положительных – на другой. Отключение источника питания приведёт к тому, что заряд не исчезнет моментально, игнорируя явление его постепенной утечки. Затем, если крышки детали подключены к какой-то нагрузке, например, к вспышке, конденсатор разрядится сам и вернёт всю накопленную в нём энергию во вспышку.

Обозначение конденсаторов

Конденсаторы – это пассивные компоненты, которые хранят электрический заряд. Эта простая функция применяется в различных случаях:

  • При переменном токе.
  • При постоянном токе.
  • В аналоговых сетях.
  • В цифровых цепях.

Примеры использования приборов: системы синхронизации, формирование сигнала, связь, фильтрация и сглаживание сигнала, настройка телевизоров и радиоприёмников.

Характеристики конденсатора

Основной характеристикой данного элемента является емкость, или С. Она определяет способность устройства собирать электрический заряд, зависит от геометрической конфигурации крышек и от электрической проницаемости диэлектрика между крышками.

Важно! Емкость зависит от типа используемого диэлектрика, а также от геометрических размеров элемента.

Для того, чтобы описать принцип работы устройства формулой, необходимо понять, что это постоянная пропорциональность в уравнении, представляющая собой взаимную зависимость накопленного заряда q от площади пластинок и от разности потенциалов V между ними.

Мощность выражается в единицах, называемых фарадами F. Но на практике используются и более мелкие единицы, такие как микрофарады и пикофарады.

Внешний вид устройств

Таким образом, если напряжение U приложено к конденсатору, электрический заряд накапливается на крышках детали. Значение накопленного заряда на каждой пластинке одинаково, они отличаются только знаком. Этот процесс накопления электрического показателя на называется зарядкой.

Другим параметром детали является номинальное напряжение, а именно, его максимальное значение, которое может подаваться на конденсатор. При подключении более высокого напряжения возникает пробой диэлектрика. Это приводит к короткому замыканию элемента. Каким будет номинальное значение напряжения, зависит от типа диэлектрика и его толщины.

Важно! Чем толще диэлектрик, тем выше номинальное напряжение, которое он выдерживает.

Условные обозначения

Ещё одним параметром является ток утечки -значение проводящего показателя, возникающее при подаче постоянного напряжения на концы элемента.

Для чего используются конденсаторы?

Электростанции

Почти все электронные устройства имеют блок питания, который преобразует переменный ток, присутствующий в доме, в постоянный ток. Конденсаторы играют важную роль в преобразовании переменного тока в постоянный, устраняя электрические помехи. В источниках энергии используются электролитические конденсаторы различных размеров – от нескольких миллиметров до нескольких дюймов (или сантиметров).

Звуковые покрытия

Конденсаторы имеют множество применений в аудио оборудовании. Они блокируют постоянный ток на входе вс усилитель, предотвращая внезапные звуки или шумы, которые могут повредить колонки и наушники. Данные детали, используемые в аудиофильтрах, позволяют контролировать басы.

Компьютеры

Цифровые схемы в компьютерах передают электронные импульсы на высоких скоростях. Эти потоки в сети могут создавать помехи сигналам от соседней цепи, поэтому разработчики высокотехнологичного оборудования применяют конденсаторы для минимизации помех.

Высокотехнологичный конденсатор

Как правильно рассчитать ёмкость конденсатора?

Самый простой пример конденсатора – плоская модель. Она имеет форму двух параллельных крышек из проводника, между которыми находится слой диэлектрика. Для того, чтобы знать, как посчитать ёмкость конденсаторов, необходимо применить следующую формулу:

С = e x e0 x s / d,

где S – площадь поверхности пластинок и d – расстояние между ними. В свою очередь, это относительная электрическая проницаемость данного диэлектрика.

Как правило, конденсаторы применяются не по отдельности, а подключаются в более крупные системы. Они могут быть соединены последовательно, параллельно или смешанным способом.

Формула ёмкости

Важно! В последовательно соединённых элементах абсолютное значение заряда на каждой пластине идентично.

Таким образом, результирующее напряжение равно сумме данных показателей на отдельных компонентах прибора.

Общая ёмкость системы будет определяться по формуле:

1/С = 1/С1 + 1/С2 + 1/С3 + …

При параллельном подключении разность потенциалов на каждом из деталей одинакова. Таким образом, суммарный заряд будет равен сумме зарядов на компонентах конденсатора, а результирующая ёмкость – сумме отдельных единичных величин:

C = c1 + c2 + c3 + …

Основные формулы ёмкости

Базовый расчёт конденсатора предполагает выявление зависимости емкости и заряда, удерживаемого на элементе, а также напряжением на пластинах.

C=QVC=QV

C – емкость, или объём в Фарадах
Q – заряд, удерживаемый на пластинах в кулонах
V – разность потенциалов между пластинами в вольтах

Это уравнение используется для расчета работы, необходимой для зарядки конденсатора и энергии, хранящейся в нем.

Формула энергии

W=∫Q0V dQW=∫0QV dQ

W=∫Q0qC dQW=∫0QqC dQ

W=12CV2

Важно! Необходимо знать, какое влияние конденсатор будет оказывать на любую цепь, в которой он работает. Он не только предотвращает прохождение постоянной составляющей тока сигнала, но и оказывает влияние на любой переменный сигнал.

Реактивное сопротивление

В цепи постоянного тока помимо батареи может присутствовать резистор, который оказывает сопротивление току в цепи.  То же справедливо и для схемы переменного тока с элементом, накапливающим заряд. Конденсатор с небольшой площадью пластины позволяет хранить только небольшое количество заряда, и это будет препятствовать протеканию тока. Конденсатор имеет определенное реактивное сопротивление, и оно зависит от его величины, а также от частоты срабатывания. Чем выше частота, тем меньше реактивное сопротивление.

Фактическое реактивное сопротивление можно вычислить по формуле:

Xc = 1 / (2 pi f C)

где

Xc – ёмкостное реактивное сопротивление в Омах.
f – частота в Герцах.
C – ёмкость в Фарадах.

Текущий расчет

Реактивное сопротивление конденсатора, рассчитанное по приведенной выше формуле, измеряется в Омах. Затем ток, протекающий в цепи, может быть рассчитан обычным способом с использованием закона Ома:

V = I Xc

Главный показатель конденсатора

Активное и реактивное сопротивления

Хотя активное и реактивное сопротивления очень похожи. Даже значения обоих параметров измеряются в Омах, но они не совсем одинаковы.  В результате этого невозможно сложить их вместе непосредственно. Вместо этого их нужно суммировать «векторно». Другими словами, необходимо округлить каждое значение, а затем сложить их вместе и выделить квадратный корень из этого числа:

Xtot2 = Xc2 + R2

В данной статье были подробно описаны основные компоненты, устройство и принцип работы конденсаторов, а также приведены базовые формулы, предназначенные для того, чтобы посчитать полезный объём прибора. Для более глубокого ознакомления необходимо внимательно рассмотреть типы данных деталей и их практические особенности в различных схемах и устройствах.

Конденсаторы

и формулы для расчета емкости

Конденсаторы — это пассивные устройства. в электронных схемах для хранения энергии в виде электрического поля. Они комплимент индукторы, хранящие энергию в виде магнитного поля. Идеальный конденсатор является эквивалентом разомкнутой цепи (бесконечное сопротивление) для постоянного тока (DC) и представляет собой импеданс (реактивное сопротивление) для переменные токи (AC), зависящие от частоты тока (или напряжения).Реактивное сопротивление (сопротивление току расход) конденсатора обратно пропорционален частоте сигнала, воздействующего на него. Конденсаторы изначально были называемые «конденсаторами» по причине, которая восходит к временам Лейденской банки, когда считалось, что электрические заряды накапливаться на пластинах в процессе конденсации.

Свойство емкости, которая препятствует изменению напряжения, используется для передачи сигналов с компонент с более высокой частотой, предотвращая прохождение сигналов компонентов с более низкой частотой.Обычное применение конденсатор в РЧ (радиочастотной) цепи — это место, где есть напряжение смещения постоянного тока, которое необходимо заблокировать от присутствия в цепи, позволяя прохождению радиочастотного сигнала. Источники питания постоянного тока используют большие значения емкости параллельно с выходом. клеммы для сглаживания низкочастотных пульсаций из-за выпрямления и / или переключения форм сигналов.

При использовании последовательно (левый рисунок) или параллельно (правый рисунок) с его комплемент схемы, индуктор, комбинация индуктор-конденсатор образует контур, который резонирует на определенной частоте это зависит от значений каждого компонента.В последовательной цепи сопротивление протеканию тока на резонансной частоте равен нулю с идеальными компонентами. В параллельной цепи (справа) сопротивление протеканию тока бесконечно с идеальными компонентами.

Реальные конденсаторы, состоящие из физических компонентов, демонстрируют больше, чем просто емкость, когда присутствует в цепи переменного тока. Слева показана модель симулятора общей схемы. Он включает в себя собственно идеальный конденсатор с параллельным резистивным подключением. компонент («Утечка»), реагирующий на переменный ток.Эквивалентный резистивный компонент постоянного тока (‘ESR’) последовательно с идеальным конденсатором и эквивалентной последовательной индуктивной составляющей («ESL») присутствует из-за металлических выводов (если они есть) и характеристик поверхностей пластин. Эта индуктивность в сочетании с емкостью создает резонансную частоту, на которой конденсатор выглядит как чистое сопротивление.

Когда рабочая частота увеличивается за пределы резонанса (также известного как собственная резонансная частота или SRF), схема ведет себя как индуктивность, а не как емкость.Следовательно, требуется тщательное рассмотрение SRF, когда выбор конденсаторов. Симуляторы типа SPICE используют эту или даже более сложную модель для облегчения более точных расчетов. в широком диапазоне частот.

Уравнения для последовательного и параллельного объединения конденсаторов приведены ниже. Для конденсаторов приведены дополнительные уравнения. различной конфигурации. Как показывают эти цифры и формулы, емкость — это мера способности двух поверхностей. для хранения электрического заряда.Разделенный и изолированный диэлектриком (изолятором), чистый положительный заряд накапливается на одна поверхность и чистый отрицательный заряд хранится на другой поверхности. В идеальном конденсаторе заряд будет храниться бесконечно; однако реальные конденсаторы постепенно теряют заряд из-за токов утечки через неидеальный диэлектрик.


Суммарная емкость последовательно соединенных конденсаторов равна обратной величине сумма обратных величин индивидуальных емкостей.Держите единицы измерения постоянными.

Емкость (C в фарадах) двух параллельных пластин равной площади равна произведению площади (A, в метрах) одной пластины. расстояние (d, в метрах), разделяющее пластины, и диэлектрическая проницаемость (ε, в Фарадах на метр) пространства разделение пластин. ε, полная диэлектрическая проницаемость, является произведением диэлектрической проницаемости свободного пространства, ε 0 , и относительная диэлектрическая проницаемость материала ε r .Обратите внимание, что единицы измерения длины и площади могут быть метрическими. или английский, если они согласованы.

Коэффициент рассеяния (DF), также известный как тангенс потерь (тангенс δ) является взаимозаменяемым образом определяется как обратная величина коэффициента качества (QF) или отношение сопротивления эквивалентное последовательное (ESR) и емкостного сопротивления (X C ).Это показатель степени потери накопленного заряда. DF обычно используется в низкочастотных приложениях, в то время как tan δ чаще используется в высокочастотных приложениях.


Суммарная емкость параллельно соединенных конденсаторов равна сумме индивидуальных емкости. Держите единицы измерения постоянными.

Следующие физические константы и механические размерные переменные применимы к уравнениям на этой странице.Единицы для уравнений показаны в скобках в конце уравнений; например, означает, что длина дана в дюймах, а индуктивность — в единицах Генри. Если единицы не указаны, то можно использовать любые, если они согласованы для всех объектов; т.е. все измерители, все мкФ, пр.

C = емкость
L = индуктивность
W = энергия
ε r = относительная диэлектрическая проницаемость (безразмерная)
ε 0 = 8,85 x 10 -12 Ф / м (диэлектрическая проницаемость свободного пространства)
µ r = Относительная проницаемость (безразмерная)
µ 0 = 4π x 10 -7 Гн / м (проницаемость свободного пространства)

1 метр = 3.2808 футов <—> 1 фут
= 0,3048 метра
1 мм = 0,03937 дюйма <—> 1 дюйм
= 25,4 мм

Кроме того, точки (не путать с десятичными знаками) используются для обозначения умножения. во избежание двусмысленности.

Емкостное реактивное сопротивление (X C , в Ω) обратно пропорциональна частоте (ω, в радианах / сек, или f, в Гц) и емкости (C, в Фарадах).Чистая емкость имеет фазовый угол -90 ° (напряжение отстает от тока с фазовым углом 90 °).

Заряд (Q, в кулонах) конденсатора Пластины — это произведение емкости (C в фарадах) и напряжения (V в вольтах) на устройстве.

Энергия (Вт, в Джоулях) хранится в конденсаторе представляет собой половину произведения емкости (C в фарадах) на напряжение (V в вольтах) на устройстве.

Ток действительно течет «через» идеальный конденсатор. Напротив, заряд, накопленный на его пластинах, передается в подключенную цепь, тем самым облегчая ток поток. И наоборот, сетевое напряжение, приложенное к пластинам, вызывает протекание тока в подключенной цепи по мере накопления заряда. на тарелках.

Добротность безразмерная. отношение реактивного сопротивления к сопротивлению в конденсаторе.

Связанные страницы на RF Cafe
— Конденсаторы и Расчет емкости
— Конденсатор Цветовой код
— Преобразование емкости
— Конденсатор Диэлектрики
— Стандартные значения конденсатора
— Поставщики конденсаторов
— Благородное искусство разъединения

Как рассчитать конденсаторы, подключенные последовательно и параллельно — Kitronik Ltd

Параллельные конденсаторы

Когда конденсаторы подключаются друг к другу (бок о бок), это называется параллельным подключением.Это показано ниже. Чтобы рассчитать общую общую емкость ряда конденсаторов, подключенных таким образом, вы складываете отдельные емкости по следующей формуле: CTotal = C1 + C2 + C3 и т. Д. Пример: Чтобы рассчитать общую емкость для этих трех конденсаторов, подключенных параллельно. Cобщ = C1 + C2 + C3 = 10F + 22F + 47F = 79F

Задача 1:

Рассчитайте общую емкость следующих конденсаторов, включенных параллельно.

Конденсаторы серии

Когда конденсаторы подключаются друг за другом, это называется последовательным соединением.Это показано ниже. Чтобы рассчитать общую общую емкость двух конденсаторов, подключенных таким образом, вы можете использовать следующую формулу:
Итого = C1 x C2 и так далее
C1 + C2
Пример: чтобы рассчитать общую емкость для этих двух последовательно соединенных конденсаторов.

Задача 2:

Рассчитайте общую емкость следующих последовательно включенных конденсаторов.

Три или более конденсатора последовательно

Чтобы рассчитать общую общую емкость трех или более конденсаторов, подключенных таким образом, вы можете использовать следующую формулу: и так далее.Пример: чтобы рассчитать общую емкость для этих трех последовательно соединенных конденсаторов.

Задача 3:

Рассчитайте общую емкость следующих последовательно включенных конденсаторов.

ответов

Задача 1

1 = 232,2 ° F 2 = 169,0 ° F 3 = 7,0 ° F

Задача 2

1 = 2,48F 2 = 14,99F 3 = 4,11F

Задача 3

1 = 3,33F 2 = 1,167F 3 = 0,35F Примечание Значения конденсаторов в этом листе поддерживаются высокими (близкими к единице или больше). Это сделано для упрощения процесса обучения.На самом деле типичные значения конденсаторов намного меньше единицы. Загрузите PDF-версию этой страницы здесь. Узнать больше об авторе подробнее »Если вы нашли эту статью полезной и хотели бы получать от нас обновления продуктов и бесплатные электронные ресурсы, то зарегистрируйтесь здесь. Мы также ненавидим спам и обещаем никогда не продавать и не сообщать свой адрес электронной почты, и вы можете отказаться от подписки в любое время.

© Kitronik Ltd — Вы можете распечатать эту страницу и ссылку на нее, но не должны копировать страницу или ее часть без предварительного письменного согласия Kitronik.

Простые формулы конденсатора накопления энергии

У вас есть конденсатор или вам нужно его выбрать, вы хотите вычислить некоторые вещи о нем с точки зрения его использования для хранения / доставки энергии (в отличие от фильтрации), вы хотели бы просто знать немного больше, чем онлайн-калькулятор, но не намного больше, потому что математика причиняет боль вашему мозгу. Эта страница для вас.

ln () (натуральный логарифм) часто встречается в уравнениях, натуральный логарифм — это обратное преобразование e в степень чего-либо (то есть ln (e x ) = x), в электронных таблицах это функция » ln () «, в коде (например, C / C ++ [Arduino!]), это обычно функция» log () «.
Все формулы предполагают «идеальный» конденсатор, без учета ESR или других неидеальных характеристик. Этого достаточно, чтобы попасть в бейсбольный стадион.
Вы можете изменить поля в каждом разделе, чтобы выполнить свой собственный расчет.

Помните, что ваше напряжение питания для зарядки конденсатора не должно превышать максимальное номинальное напряжение ваших конденсаторов (говоря в общих чертах).

У меня есть неизвестный конденсатор, известный резистор и секундомер, рассчитываю емкость.

C = (0 — секунды) / R / ln (1- (VCharged / VSupply))

Где секунды — это количество секунд, за которые взимается плата; R — резистор в Ом; VCharged — напряжение конденсатора в секундах; VSupply — это напряжение питания.

Вам не нужно заряжать конденсатор полностью, чтобы измерить его, пока вы начинаете с разряда, рассчитываете период зарядки и записываете напряжение, которое вы достигли за этот период, вы можете выполнить расчет — но чем дольше (медленнее) вы заряжаете тем более точным будет ваш результат, потому что ваши ошибки и т. д. будут менее значимыми.Когда самая маленькая цифра на вашем счетчике, измеряющая напряжение конденсатора, изменяется один раз в секунду, это было бы разумным временем для остановки. Имейте в виду также, что конденсаторы имеют заведомо большой допуск (+/- 30% вполне нормально для некоторых типов конденсаторов).

Вы можете использовать поля в примере, чтобы выполнить свои собственные вычисления, измените числа, чтобы увидеть, как себя ведут.

Сколько ампер-часов (Ач) в этом конденсаторе?

Ач = (C * (VCharged — VDepleted)) / 3600

Где VCharged — это напряжение заряда конденсатора, VDepleted — это опустошенное напряжение, а C — это емкость.

Здесь вы можете видеть, что если вы используете конденсатор для замены батареи, вам действительно нужно подключить его к преобразователю постоянного / постоянного тока с подходящим диапазоном входного напряжения, чтобы вы могли разрядить свой конденсатор до очень низкого напряжения, взяв наш В приведенном выше примере, если бы вместо напряжения отключения 3,3 В у нас было напряжение отключения 0,5 В, мы получили бы 10 мАч вместо жалких 2,5 мАч.

Вы можете использовать поля в примере, чтобы выполнить свои собственные вычисления, измените числа, чтобы увидеть, как себя ведут.

Пример

Конденсатор 10F, который был заряжен до 4,2В, разряжен до 3,3В, сколько там мАч?

(10 * (4,2 — 3,3)) / 3600 = 0,0025 Ач = 2,5 мАч

Сколько ватт-часов (Втч) в этом конденсаторе?

Вт · ч = (VCharged 2 — VDepleted 2 ) / (7200 / C)

Здесь вы можете видеть, что если вы используете конденсатор для замены батареи, вам действительно нужно подключить его к повышающему преобразователю с подходящим диапазоном входного напряжения, чтобы вы могли разрядить свой конденсатор до очень низкого напряжения, взяв наш пример выше. , если вместо 3.Напряжение отключения 3 В, у нас было напряжение отключения 0,5 В, мы получили бы 0,024 Вт-ч вместо мизерных 0,009 Вт-ч

Вы можете использовать поля в примере, чтобы выполнить свои собственные вычисления, измените числа, чтобы увидеть, как себя ведут.

Пример

Конденсатор 10F, который был заряжен до 4,2 В, разряжен до 3,3 В, сколько в нем Wh?

((4,2 2 ) — (3,3 2 )) / (7200/10) = 0,009375 Вт · ч

Сколько времени потребуется, чтобы зарядить этот конденсатор постоянным сопротивлением?

Секунды = 0 — (R * C * ln (1 — (VCharged / VSupply)))

Где VCharged — это напряжение, измеренное на конденсаторе, а VSupply — это напряжение источника питания, C — емкость в Фарадах, а R — резистор в Ом.

VCharged должно быть ниже, чем VSupply — помните, что по мере того, как конденсатор заряжается больше, его сопротивление зарядке увеличивается, оно никогда не может достичь того же напряжения, что и напряжение питания, даже если оно на неизмеримо меньше, оно всегда меньше.

Вы можете использовать поля в примере, чтобы выполнить свои собственные вычисления, измените числа, чтобы увидеть, как себя ведут.

Сколько времени потребуется, чтобы разрядить этот конденсатор через постоянное сопротивление?


Секунды = 0 — (R * C * ln (VDepleted / VCharged))

Где VCharged — начальное напряжение конденсатора, VDepleted — конечное напряжение, которое вы определите как разряженное, R — сопротивление, C — емкость.

VDepleted должно быть больше нуля — помните, что ваша реальная схема, вероятно, не может много сделать с чем-либо, даже отдаленно близким к нулю.

Вы можете использовать поля в примере, чтобы выполнить свои собственные вычисления, измените числа, чтобы увидеть, как себя ведут.

Сколько времени потребуется, чтобы зарядить / разрядить этот конденсатор постоянным током?

секунд = (C * (VCharged — VDepleted)) / Amps

Где C — в фарадах, VCharged — это начальное напряжение на конденсаторе, VDepleted — это напряжение завершения разряда, а Amps — это ток в амперах.Для постоянного тока формула одинакова, независимо от того, разряжаете ли вы или заряжаете, разница в напряжении имеет значение, сколько напряжения должно нарастать или падать.

Вы можете использовать поля в примере, чтобы выполнить свои собственные вычисления, измените числа, чтобы увидеть, как себя ведут.

Пример

Конденсатор 10Ф разряжается с 5В до 4В при постоянном токе 500мА, сколько времени это занимает?

(10 * (5-4)) / 0,5 = 20 секунд (калькулятор)

Сколько времени потребуется, чтобы зарядить / разрядить этот конденсатор постоянной мощностью (Вт)?

Секунды = 0.5 * C * ((VCharged 2 — VDepleted 2 ) / Вт)

Где C в фарадах, VS — это начальное напряжение на конденсаторе, VC — это напряжение завершения разряда, а P — мощность разряда в ваттах.

Вы можете использовать поля в примере, чтобы выполнить свои собственные вычисления, измените числа, чтобы увидеть, как себя ведут.

Пример

Конденсатор 10Ф разряжается с 5В до 4В при постоянной мощности 2Вт, сколько времени это занимает?

0.5 * 10 * ((5 2 -4 2 ) / 2) = 22,5 секунды

У меня есть аккумулятор / элемент на несколько ампер-часов. Сколько емкости мне нужно для непосредственной замены?

C = (Ач * 3600) / (VCharged — VDepleted)

Наивно мы можем предположить, что VCharged совпадает с номинальным напряжением вашей батареи, а VDepleted равно нулю, или, точнее говоря, VCharged — это максимальный заряд для вашей батареи, а VDepleted — это минимальное напряжение, которое ваша схема может использовать.

Вы можете использовать поля в примере, чтобы выполнить свои собственные вычисления, измените числа, чтобы увидеть, как себя ведут.

Пример

Щелочной элемент емкостью 1250 мАч с полным напряжением 1,5 В и пустым напряжением 0,8 В должен быть заменен конденсатором, какого размера он должен быть?

(1,25 * 3600) / (1,5 — 0,8) = 6428 F

Очевидно, что это непрактично, поэтому см. Следующий раздел …

Если у меня есть батарея / элемент на несколько ампер-часов, какой емкости мне нужно заменить, если я использую преобразователь постоянного тока в постоянный?

C = 7200 / ((VCharged 2 — VDepleted 2 ) / ((Ah * VBattery) / 0.75))

Где Ah — это емкость батареи в Ач, VBattery — номинальное напряжение батареи, 0,75 — (наихудший случай) КПД преобразователя постоянного / постоянного тока, VCharged — это заряженное напряжение конденсатора, VDepleted — это наименьшее напряжение конденсатора вашего постоянного / Преобразователь постоянного тока справится.

Вы можете использовать поля в примере, чтобы выполнить свои собственные вычисления, измените числа, чтобы увидеть, как себя ведут.

Пример

Щелочной элемент емкостью 1250 мАч с номинальным напряжением 1.5 В следует заменить конденсатором (батареей), который будет заряжаться до 10,8 В и приводится в действие понижающим преобразователем, который принимает входное напряжение до 1,6 В.

7200 / ((10,8 2 -1,6 2 ) / ((1,25 * 1,5) / 0,75)) = 157F

Я хочу рисовать x ампер в течение t секунд, какая емкость мне нужна?

C = (Амперы * секунды) / (VCharged — VDepleted)

Где C — требуемая емкость, Amps — это требуемый ток, VCharged — это начальное напряжение, до которого вы заряжали конденсатор, а VDepleted — это минимальное напряжение, которое вы будете принимать.Помните, как только вы потребляете ток из конденсатора, его напряжение падает, вот как это работает, поэтому вы не можете просто сказать: «Я хочу 1 ампер при X вольт», вы должны сказать, что я нарисую усилитель и может сделать это между этим и этим напряжением.

Вы можете использовать поля в примере, чтобы выполнить свои собственные вычисления, измените числа, чтобы увидеть, как себя ведут.

Пример

Вы хотите потреблять 500 мА от конденсатора, заряженного до 12 В, в течение 5 секунд, и после этого конденсатор будет измерять 9 В. Какого размера должен быть конденсатор?

(0.5 * 5) / (12 — 9) = 0,83F

Я хочу получать x Вт в течение t секунд, какая емкость мне нужна?

C = (секунды * 2) / ((VCharged 2 — VDepleted 2 ) / Watts)

Где C — емкость, Watts — мощность в ваттах, VCharged — это начальное напряжение, до которого вы заряжали конденсатор, а VDepleted — это минимальное напряжение, которое вы будете принимать. Помните, как только вы потребляете ток из конденсатора, его напряжение падает, вот как это работает, поэтому вы не можете просто сказать: «Я хочу 1 Вт при X Вольт», вы должны сказать, что я возьму ватт и может сделать это между этим и этим напряжением.

Вы можете использовать поля в примере, чтобы выполнить свои собственные вычисления, измените числа, чтобы увидеть, как себя ведут.

Пример

Вы хотите подавать 10 Вт в течение 5 секунд от конденсатора, первоначально заряженного до 12 В, а затем измеряющего 9 В, какого размера должен быть конденсатор?

(5 * 2) / ((12 2 — 9 2 ) / 10) = 1,6F

Как вы пришли к этой формуле?

В представленной формуле нет ничего особенного. Хорошей ссылкой для упрощения является этот документ от ELNA, производителя суперконденсаторов, он охватывает основные уравнения для постоянного тока, мощности и разряда сопротивления.

Electronics-Tutorials.ws обеспечивает разряд с постоянным сопротивлением, и заряд с постоянным сопротивлением также задается в виде Vc = Vs (1-e -t / RC ), которым можно управлять, чтобы найти t (см. Видео ниже) .

Это видео от Пола Уэсли Льюиса помогло моему лишенному математики мозгу научиться управлять манипуляциями.

Следующие ниже онлайн-калькуляторы были полезны при подтверждении моей работы Must Calculate, Circuits.dk, bitluni.net (ВНИМАНИЕ, расчет Wh на сайте bitluni неверен, если у вас минимальное напряжение> 0)

На основе этих уравнений и ресурсов получены следующие данные.

Вывод для ампер-часов

Начните с данной формулы для разряда при постоянном токе, установите t = 3600 секунд и решите, чтобы I было любым током, необходимым для разрядки конденсатора за это время и, следовательно, ампер-часов

секунд = (C * (VCharged — VDepleted)) / I

3600 = (C * (VCharged — VDepleted)) / I

I * 3600 = (C * (VCharged — VDepleted))

I = (C * (VCharged — VDepleted)) / 3600

(I = Ач)

Вывод для ватт-часов

Это выводится из формулы для разряда постоянной мощности, где t = 3600 секунд, вычисленных для P, равного любым ваттам, необходимым для разрядки конденсатора за это время и, следовательно, ватт-часам.

секунд = 0,5 * C * ((VCharged 2 — VDepleted 2 ) / P)

3600 = ((VCharged 2 — VDepleted 2 ) / P) * C * 0,5

3600 / 0,5 = ((VCharged 2 — VDepleted 2 ) / P) * C

7200 = ((VCharged 2 — VDepleted 2 ) / P) * C

7200 / C = (VCharged 2 — VDepleted 2 ) / P

P * (7200 / C) = (VCharged 2 — VDepleted 2 )

P = (VCharged 2 — VDepleted 2 ) / (7200 / C)

(P = Wh)

Вывод для эквивалентности батареи в ампер-часах

Это просто решение уравнения ампер-часов для емкости

Ач = (C * (VCharged — VDepleted)) / 3600

Ач * 3600 = C * (VCharged — VDepleted)

(Ач * 3600) / (VCharged — VDepleted) = C

Расчет эквивалентности батареи в ампер-часах с преобразователем постоянного тока

Мы используем полученное выше уравнение ватт-часов, заменяя ватт-часы заданными ампер-часами и эквивалентным напряжением батареи, скорректированным с КПД 75% для повышающего преобразователя.

Вт · ч = (VCharged 2 — VDepleted 2 ) / (7200 / C)

((Ач * VBattery) / 0,75) = (VCharged 2 — VDepleted 2 ) / (7200 / C)

7200 / C = (VCharged 2 — VDepleted 2 ) / (Ah * VBattery)

7200 = C * ((VCharged 2 — VDepleted 2 ) / (Ah * VBattery))

7200 / ((VCharged 2 — VDepleted 2 ) / (Ah * VBattery)) = C

Вывод для отрисовки ампер X для секунд T

Простое решение данного уравнения постоянного тока, решение для C

секунд = (C * (VCharged — VDepleted)) / I

секунд * I = C * (VCharged — VDepleted)

(секунды * I) / (VCharged — VDepleted) = C

Вывод для рисования X Вт в течение T секунд

Простое решение данного уравнения постоянной мощности, решение для C

секунд = 0.5 * C * ((VCharged 2 — VDepleted 2 ) / P)

Секунды = C * ((VCharged 2 — VDepleted 2 ) / P) * 0,5

Секунды * 2 = C * ((VCharged 2 — VDepleted 2 ) / P)

(секунды * 2) / ((VCharged 2 — VDepleted 2 ) / P) = C

Основные расчеты конденсатора

— Инженерное мышление

Конденсаторы

используются во многих цепях для разных целей, поэтому мы собираемся изучить некоторые основные вычисления конденсаторов для цепей постоянного тока.

Прокрутите вниз, чтобы просмотреть обучающее видео на YouTube

Конденсаторы в цепях постоянного тока

Конденсаторы

обычно выглядят так. У нас есть конденсатор электролитического и керамического типа. Электролитик поляризован, что означает, что одна сторона должна быть подключена к плюсу, а другая — к минусу источника питания. Керамический тип обычно может быть подключен любым способом. На стороне электролитического конденсатора мы находим пунктирную линию, указывающую отрицательную сторону, длинный вывод также указывает на положительную сторону нового конденсатора.Но обычно они обрезаются во время установки, поэтому не полагайтесь только на это. Эти два конденсатора представлены подобными символами, обратите внимание, что у поляризованного конденсатора есть маленький символ плюса, указывающий на положительную сторону.

При подключении к источнику постоянного тока напряжение аккумулятора подталкивает электроны к конденсатору, поэтому конденсатор заряжается до того же напряжения, что и аккумулятор. Конденсаторы заряжаются почти мгновенно при подключении напрямую к батарее, но мы почти всегда используем резистор, это задерживает время зарядки, и позже в этой статье мы увидим, как это рассчитать.

Внутри конденсатора с одной стороны скопилось много электронов, им препятствует перемещение поперек из-за изоляционного материала между двумя сторонами. Поскольку электроны заряжены отрицательно, у нас есть накопление заряда на одной стороне по сравнению с другой, поэтому у нас есть разница напряжений между двумя выводами.

Эти электроны удерживаются на месте, и конденсатор может удерживать этот заряд в течение длительных периодов времени. Получив путь, они будут разряжаться, пока не опустеют.Электроны не проходят через конденсатор; они просто накапливаются внутри, а затем высвобождаются.

Количество заряда, накопленного в конденсаторе, рассчитывается по формуле «Заряд = емкость (в фарадах), умноженная на напряжение». Итак, для этого конденсатора микрофарад на 12 В 100 мкФ мы преобразуем микрофарады в фарады (100/1000000 = 0,0001F), затем умножаем это на 12 В, чтобы увидеть, что он хранит заряд 0,0012 кулонов.

Если нам нужно сохранить заряд, скажем, в 0,0002 кулонов, мы просто разделим его на напряжение, в данном случае 12 В, чтобы увидеть, что нам нужен 0.2
= 0,5 x 0,0001F x 144
= 0,0072 Джоуля

Мы знаем, что конденсатор будет заряжаться до напряжения батареи. Итак, если мы подключим такой конденсатор, какое будет напряжение на конденсаторе? Будет 1,5В. Если мы подключим вот так конденсатор, какое на нем будет напряжение? Тоже будет 1,5В. Это два разных способа соединения конденсаторов в цепях, последовательно или параллельно. Это заставит конденсаторы работать по-другому.

Параллельные конденсаторы

Если мы разместим конденсатор параллельно с лампой, когда батарея будет удалена, конденсатор начнет питать лампу, он медленно тускнеет по мере разряда конденсатора.Если мы используем два конденсатора, мы сможем запитать лампу дольше.

Допустим, конденсатор 1 = 10 мкФ и конденсатор 2 = 220 мкФ. Как рассчитать общую емкость? Это очень просто, ответ — 230 мкФ. Конденсаторы соединяются параллельно. Итак, 10 мкФ + 220 мкФ = 230 мкФ. Мы можем продолжать добавлять больше, например конденсатор 100 мкФ, и общая сумма будет просто суммой всех конденсаторов. Помещая их параллельно, мы, по сути, объединяем их, чтобы сформировать конденсатор большего размера. Это очень полезно, потому что, если, например, нам нужен большой конденсатор на 2000 мкФ, но у нас его не было, мы можем просто использовать более мелкие конденсаторы, такие как 2 x 1000 мкФ по 4 x 500 мкФ и т. Д.Он также часто используется для фильтрации шума и обеспечения большего тока в цепях с высокими требованиями.

Общий заряд, накопленный в параллельных конденсаторах, равен: заряд = общая емкость, умноженная на напряжение. Итак, у нас есть батарея на 9 В и два конденсатора общей емкостью 230 мкФ. Поскольку он параллелен, этот провод составляет 9 В, а это 0 В, поэтому оба конденсатора заряжены до 9 В. Следовательно, 0,00023 F, умноженное на 9V = 0,00207 кулонов. И с тремя конденсаторами у нас есть 330 мкФ (0.00033 F), умноженное на 9V = 0,00297 кулонов.

Мы также можем рассчитать заряд каждого конденсатора индивидуально. Мы просто используем одну и ту же формулу для каждого конденсатора, ответы на этот вопрос вы можете увидеть на экране.
Конденсатор 1 = 0,00001 F x 9 В = 0,00009 Кулонов
Конденсатор 2 = 0,00022 F x 9 В = 0,00198 Кулонов
Конденсатор 3 = 0,0001 F x 9 В = 0,0009 Кулонов
Всего = 0,00009 + 0,00198 + 0,0009 = 0,00297 Кулонов

Конденсаторы серии

Если мы поместим конденсатор последовательно с лампой, при нажатии переключателя он загорится, но затем станет тусклее, когда конденсатор достигнет уровня напряжения батареи, и как только он достигнет этого уровня, лампа выключится.Помните, что электроны не могут проходить через конденсатор из-за изоляционного материала внутри. Электроны просто накапливаются внутри на одной пластине и по мере накопления отбрасывают равное количество от противоположной пластины. Таким образом, ток может течь только тогда, когда конденсатор заряжается или разряжается. В настоящее время, когда батарея снята, конденсатор не может разрядиться, поэтому он будет поддерживать напряжение на одном уровне. Неважно, подключим мы или отключим аккумулятор, лампа не загорится.Однако, если мы предоставим другой путь, при нажатии переключателя конденсатор может теперь разрядиться, поэтому электроны могут проходить через лампу и освещать ее. По мере разряда конденсатора он станет более тусклым.

Что, если бы у нас было 2 конденсатора, соединенных последовательно, опять же, конденсатор 1 — 10 мкФ, а конденсатор 2 — 220 мкФ. Как определить общую емкость? Для этого мы используем эту формулу, она может показаться сложной, но на самом деле она очень проста. Все, что нам нужно сделать, это ввести наши конденсаторы емкостью 10 и 220 мкФ.Мы можем ввести это так на наших калькуляторах или в Excel. Но при ручном вычислении мы делим 1 на 10, что равно 0,1, и 1, деленное на 220, что составляет 0,00454. Мы складываем их вместе, чтобы получить 0,10454, а затем 1, разделенное на это, дает в сумме 9,56 мкФ. Обратите внимание, что общая емкость теперь меньше, чем конденсатор с наименьшим значением.

Если мы добавим в схему третий конденсатор емкостью 100 мкФ, мы получим общую емкость 8,73 мкФ. Так что уменьшилось еще больше. Это потому, что, комбинируя их последовательно, мы существенно увеличиваем толщину изоляционного материала, поэтому притяжение отрицательно заряженных электронов к положительно заряженным дыркам на противоположной пластине становится слабее.

Общий заряд последовательных конденсаторов определяется по формуле заряд = емкость (в фарадах), умноженная на напряжение. Итак, если мы использовали батарею 9 В, мы конвертируем микрофарады в фарады и видим, что общий заряд равен 0,00008604 кулонов
(0,00000956F x 9V = 0,00008604 кулонов)

Общий заряд конденсаторной цепи 3-й серии составляет 0,00007857 кулонов
(0,00000873 x 9 В = 0,00007857 кулонов)

Заряд, удерживаемый каждым конденсатором в отдельности, очень легко вычислить в последовательных цепях.Это то же самое, что и общая. Каждый конденсатор содержит одинаковое количество электронов, когда они подключены последовательно. Это потому, что когда мы заряжали конденсаторы, ток был одинаковым во всех частях цепи. То же количество электронов, которые были помещены в одну пластину, вытолкнулось из противоположной пластины, поэтому каждый последовательный конденсатор может быть заряжен только до одного и того же уровня. Таким образом, наименьший конденсатор будет ограничивающим фактором.

Однако, поскольку каждый конденсатор может иметь разную емкость, напряжение каждого конденсатора будет разным.Мы находим напряжение каждого конденсатора по формуле напряжение = заряд (в кулонах), деленное на емкость (в фарадах).

Итак, для этой схемы мы видим, что конденсатор 1 — 7,8 В, конденсатор 2 — 0,35 В, а конденсатор 3 — 0,78 В. Они складываются в общее напряжение батареи, которое составляет 9 В.

Конденсатор 1: 0,00007857 C / 0,00001 F = 7,857 В
Конденсатор 2: 0,00007857 C / 0,00022 F = 0,357 В
Конденсатор 3: 0,00007857 C / 0,0001 F = 0,786 В
Общее напряжение = 7,857 В + 0,357 В + 0.786 В = 9 В

Время заряда конденсатора

Допустим, у нас есть батарея на 9 В, конденсатор на 100 мкФ, резистор на 10 кОм и переключатель, соединенные последовательно. Конденсатор полностью разряжен, и мы читаем 0 В на двух выводах.

Когда мы замыкаем выключатель, конденсатор заряжается. Напряжение будет увеличиваться до тех пор, пока не сравняется с уровнем заряда батареи. Повышение напряжения не мгновенное, оно имеет экспоненциальную кривую. Сначала напряжение быстро увеличивается, а затем замедляется, пока не достигнет того же уровня напряжения, что и аккумулятор.

Мы разбиваем эту кривую на 6 сегментов, но нас интересуют только первые 5, потому что на отметке 5 мы в основном находимся на полном напряжении, поэтому мы можем игнорировать все, что выходит за рамки этого. Каждый сегмент представляет собой нечто, называемое постоянной времени. Следовательно, поскольку у нас есть 5 сегментов, у нас есть 5 постоянных времени, поэтому для заряда конденсатора от 0 до чуть менее 100% потребуется 5 постоянных времени. Все, что нам нужно сделать, это вычислить длину одной постоянной времени и затем умножить ее на 5.

Для вычисления одной постоянной времени мы используем эту формулу.

Постоянная времени (в секундах) = сопротивление (в Ом), умноженное на емкость (в Фарадах). Итак, мы конвертируем наш резистор в Ом, а емкость конденсатора в фарады и видим, что 10 000 Ом, умноженные на 0,0001 Фарад, равны 1. Итак, в этом примере постоянная времени равна 1 секунде. Следовательно, 5 из них составляют 5 секунд. Это означает, что для полной зарядки этого конденсатора до 9В требуется 5 секунд.

Если бы сопротивление резистора было всего 1000 Ом, постоянная времени была бы 0,1 секунды, так что это заняло бы 0.5 секунд, чтобы достичь 9 В. Если бы емкость конденсатора была 1000 микрофарад, это заняло бы всего 50 секунд. Так что по мере увеличения размера конденсатора время увеличивается. При увеличении номинала резистора увеличивается и время.

Возвращаясь к нашей исходной схеме. Поэтому мы можем рассчитать уровень напряжения для каждой постоянной времени. В точке 1 напряжение всегда 63,2%, в точке 2 — 86,5%, в точке 3 — 95%, в точке 4 — 98,2% и в точке 5 — 99,3%.

Итак, в этом примере через 1 секунду напряжение конденсатора равно 5.68 В, через 2 секунды — 7,78 В, через 3 секунды — 8,55 В, через 4 секунды — 8,83 В и через 5 секунд — 8,94 В

Если вам нужен более точный ответ, мы можем вычислить каждую точку следующим образом.

Точка 1 = 9В-0В) x0,632 = 5,6880В
Точка 2 = ((9В — 5,688В) x0,632) + 5,68В = 7,7812В
Точка 3 = ((9В-7,7812В) x0,632) + 7,7812 В = 8,5515 В
Точка 4 = ((9–8,55 В) x0,632) + 8,5515 В = 8,8349 В
Точка 5 = ((9–8,8349 В) x0,632) + 8,8349 В = 8,9393 В

Помните, поскольку это последовательно, ток в цепи уменьшается, а напряжение конденсатора увеличивается.После достижения полного напряжения в цепи не будет протекать ток. Если бы резистор был лампой, он бы мгновенно достиг полной яркости, когда переключатель был замкнут, но затем стал бы более тусклым, когда конденсатор достигал полного напряжения.

Время разряда конденсатора

Когда мы обеспечиваем путь для разряда конденсатора, электроны покидают конденсатор, и напряжение на конденсаторе уменьшается. Он не разряжается мгновенно, а следует экспоненциальной кривой. Мы разбиваем эту кривую на 6 сегментов, но нас интересуют только первые 5.В точке 1 напряжение всегда 36,8%, в точке 2 будет 13,5%, в точке 3 будет 5%, в точке 4 будет 1,8% и в точке 5 будет 0,7%.

Например, если бы у нас была батарея 9 В, лампа с сопротивлением 500 Ом и конденсатор 2000 мкФ, наша постоянная времени была бы 500 Ом, умноженная на 0,002 Фарад, что составляет 1 секунду.
Итак, в тот момент, когда аккумулятор отключен, конденсатор будет на 9 В, и, поскольку он питает цепь, лампа также будет. Через 1 постоянную времени, в данном случае через 1 секунду, напряжение будет 36.8%, что составляет 3,312 В, через 2 секунды — 1,215 В, через 3 секунды — 0,45 В, через 4 секунды — 0,162 В и через 5 секунд — 0,063 В. Таким образом, лампа будет гореть чуть менее 3 секунд. Очевидно становится тусклее.


Емкость конденсатора Formula

Емкость конденсатора — это способность конденсатора накапливать электрический заряд на единицу напряжения на своих пластинах конденсатора. Емкость определяется делением электрического заряда на напряжение по формуле C = Q / V.Его единица — Фарад.

Формула

Его формула имеет следующий вид:

C = Q / V

Где C — емкость, Q — напряжение, а V — напряжение. Мы также можем найти заряд Q и напряжение V, переписав приведенную выше формулу как:

Q =

CV

В = Q / C

Фарад — единица измерения емкости. Один фарад — это величина емкости, когда один кулон заряда хранится с одним вольт на пластинах.

Большинство конденсаторов, которые используются в электронике, имеют значения емкости, указанные в микрофарадах (мкФ) и пикофарадах (пФ).Микрофарад — это одна миллионная фарада, а пикофарад — одна триллионная фарада.

Какие факторы влияют на емкость конденсатора?

Зависит от следующих факторов:

Площадь плит

Емкость прямо пропорциональна физическому размеру пластин, определяемому площадью пластины A. Большая площадь пластины дает большую емкость и меньшую емкость. На рисунке (а) показано, что площадь пластины конденсатора с параллельными пластинами равна площади одной из пластин.Если пластины перемещаются относительно друг друга, как показано на рис (b), площадь перекрытия определяет эффективную площадь пластины. Это изменение эффективной площади пластины является основным для определенного типа переменного конденсатора.

Тарелки разделительные

`Емкость обратно пропорциональна расстоянию между пластинами. Разделение пластин обозначено буквой d, как показано на рис. (А). Чем больше разделение пластин, тем меньше емкость, как показано на рис. (B).Как обсуждалось ранее, напряжение пробоя прямо пропорционально расстоянию между пластинами. Чем дальше разделены пластины, тем больше напряжение пробоя .

Диэлектрическая проницаемость материала

Как известно, изоляционный материал между пластинами конденсатора называется диэлектриком. Диэлектрические материалы имеют тенденцию уменьшать напряжение между пластинами при заданном заряде и, таким образом, увеличивать емкость. Если напряжение фиксировано, из-за наличия диэлектрика может храниться больше заряда, чем может храниться без диэлектрика.Мера способности материала создавать электрическое поле называется диэлектрической постоянной или относительной диэлектрической проницаемостью, обозначаемой как? r .

Емкость прямо пропорциональна диэлектрической проницаемости. Диэлектрическая проницаемость вакуума определяется как 1, а диэлектрическая проницаемость воздуха очень близка к 1. Эти значения используются в качестве справочных, а для всех других материалов значения ∈r указаны по отношению к таковым для вакуума или воздуха. Например, материал с εr = 8 может иметь емкость в восемь раз большую, чем у воздуха, при прочих равных условиях.

Диэлектрическая проницаемость ∈r безразмерна, поскольку является относительной мерой. Это отношение абсолютной диэлектрической проницаемости материала, ∈r, к абсолютной диэлектрической проницаемости вакуума, ∈ 0 , выраженное следующей формулой:

r = ∈ / ∈ 0

Ниже приведены некоторые общие диэлектрические материалы и типичные диэлектрические постоянные для каждого из них. Значения могут варьироваться, потому что они зависят от конкретного состава материала.

Материал Типичные значения ∈r

  • Воздух 1.0
  • тефлон 2,0
  • Бумага 2.5
  • Масло 4,0
  • Слюда 5,0
  • Стекло 7,5
  • керамика 1200

Диэлектрическая проницаемость ∈r безразмерна, поскольку является относительной мерой. Это отношение абсолютной диэлектрической проницаемости материала, ∈r, к абсолютной диэлектрической проницаемости вакуума, ∈0, которое выражается следующей формулой:

∈r = ∈ / ∈0

Значение ∈0 равно 8.85 × 10-12 Ф / м.

Формула емкости по физическим параметрам

Вы видели, как емкость напрямую связана с площадью пластины, A, и диэлектрической проницаемостью, ∈r, и обратно пропорциональна расстоянию между пластинами, d. Точная формула для расчета емкости по этим трем величинам:

C = A ∈ r ∈ / d

где ∈ = ∈ r 0 = ∈r (8,85 × 10-12F / м)

Емкость параллельного вывода конденсатора

Рассмотрим конденсатор с параллельными пластинами.Размер пластины большой, а расстояние между пластинами очень маленькое, поэтому электрическое поле между пластинами однородно.

Электрическое поле «E» между конденсаторами с параллельными пластинами составляет:

Емкость цилиндрических конденсаторов физика

Рассмотрим цилиндрический конденсатор длиной L, образованный двумя коаксиальными цилиндрами с радиусами «a» и «b». Предположим, что L >> b, так что на концах цилиндров нет окаймляющего поля.

Пусть «q» — это заряд конденсатора, а «V» — это разность потенциалов между пластинами. Внутренний цилиндр заряжен положительно, а внешний цилиндр — отрицательно. Мы хотим узнать выражение емкости для цилиндрического конденсатора. Для этого мы рассматриваем цилиндрическую гауссовскую поверхность радиуса «r», такую ​​что a << b.

Если «E» — напряженность электрического поля в любой точке цилиндрической гауссовой поверхности, то по закону Гаусса:

Если «V» — разность потенциалов между пластинами, тогда

Это соотношение для емкости цилиндрического конденсатора.

Емкость сферического конденсатора

Емкость изолированного сферического конденсатора

Внешний источник
https://en.wikipedia.org/wiki/Capacitance

конденсаторов последовательно и параллельно

Цели обучения

К концу этого раздела вы сможете:

  • Выведите выражения для полной емкости последовательно и параллельно.
  • Обозначение последовательной и параллельной частей в комбинации подключения конденсаторов.
  • Рассчитайте эффективную емкость последовательно и параллельно с учетом индивидуальных емкостей.

Несколько конденсаторов могут быть соединены вместе в различных приложениях. Несколько подключений конденсаторов действуют как один эквивалентный конденсатор. Общая емкость этого эквивалентного одиночного конденсатора зависит как от отдельных конденсаторов, так и от способа их подключения.Существует два простых и распространенных типа соединений, называемых серии и параллельно , для которых мы можем легко вычислить общую емкость. Некоторые более сложные соединения также могут быть связаны с комбинациями последовательного и параллельного.

Емкость серии

На рисунке 1а показано последовательное соединение трех конденсаторов с приложенным напряжением. Как и для любого конденсатора, емкость комбинации связана с зарядом и напряжением [латекс] C = \ frac {Q} {V} \\ [/ latex].

Обратите внимание на рис. 1, что противоположные заряды величиной Q протекают по обе стороны от первоначально незаряженной комбинации конденсаторов при приложении напряжения В . Для сохранения заряда необходимо, чтобы на пластинах отдельных конденсаторов создавались заряды одинаковой величины, поскольку заряд разделяется только в этих изначально нейтральных устройствах. Конечным результатом является то, что комбинация напоминает одиночный конденсатор с эффективным разделением пластин больше, чем у отдельных конденсаторов.(См. Рисунок 1b.) Чем больше расстояние между пластинами, тем меньше емкость. Общей особенностью последовательного соединения конденсаторов является то, что общая емкость меньше любой из отдельных емкостей.

Рис. 1. (a) Конденсаторы, подключенные последовательно. Величина заряда на каждой пластине равна Q. (b) Эквивалентный конденсатор имеет большее расстояние между пластинами d. При последовательном соединении общая емкость меньше, чем у любого из отдельных конденсаторов.

Мы можем найти выражение для общей емкости, рассматривая напряжение на отдельных конденсаторах, показанных на рисунке 1.Решение [latex] C = \ frac {Q} {V} \\ [/ latex] для V дает [latex] V = \ frac {Q} {C} \\ [/ latex]. Таким образом, напряжения на отдельных конденсаторах равны [латексному] V_1 = \ frac {Q} {C_1}, V_2 = \ frac {Q} {C_2}, \ text {и} V_3 = \ frac {Q} {C_3} \\ [/латекс].

Общее напряжение складывается из отдельных напряжений:

В = В 1 + В 2 + В 3 .

Теперь, называя общую емкость C S последовательной емкостью, считайте, что

[латекс] V = \ frac {Q} {C _ {\ text {S}}} = V_1 + V_2 + V_3 \\ [/ latex].

Вводя выражения для V 1 , V 2 и V 3 , получаем

[латекс] \ frac {Q} {C _ {\ text {S}}} = \ frac {Q} {C_ {1}} + \ frac {Q} {C_ {2}} + \ frac {Q} { C_ {3}} \\ [/ латекс].

Отменяя Q s, мы получаем уравнение для полной емкости в серии C S , равное

[латекс] \ frac {1} {C _ {\ text {S}}} = \ frac {1} {C_ {1}} + \ frac {1} {C_ {2}} + \ frac {1} { C_ {3}} + \ точки, \\ [/ latex]

, где «…» означает, что выражение действительно для любого количества конденсаторов, соединенных последовательно.Выражение этой формы всегда приводит к общей емкости C S , которая меньше любой из отдельных емкостей C 1 , C 2 ,…, как показано в примере 1.

Общая емкость в серии,

C с

Общая емкость в серии:

[латекс] \ frac {1} {C _ {\ text {S}}} = \ frac {1} {C_ {1}} + \ frac {1} {C_ {2}} + \ frac {1} { C_ {3}} + \ dots \\ [/ latex]

Пример 1. Что такое последовательная емкость?

Найдите общую емкость для трех последовательно соединенных конденсаторов, учитывая, что их отдельные емкости равны 1.000, 5.000 и 8.000 мкФ.

Стратегия

Имея данную информацию, общую емкость можно найти, используя уравнение для емкости в серии.

Решение

Ввод заданных емкостей в выражение для [latex] \ frac {1} {C _ {\ text {S}}} \\ [/ latex] дает [latex] \ frac {1} {C _ {\ text {S} }} = \ frac {1} {C_ {1}} + \ frac {1} {C_ {2}} + \ frac {1} {C_ {3}} \\ [/ latex].

[латекс] \ frac {1} {C _ {\ text {S}}} = \ frac {1} {1.000 \ mu \ text {F}} + \ frac {1} {5.000 \ mu \ text {F} } + \ frac {1} {8.000 \ mu \ text {F}} = \ frac {1.325} {\ mu \ text {F}} \\ [/ latex]

Преобразование для нахождения C S дает [латекс] C _ {\ text {S}} = \ frac {1.325} {\ mu \ text {F}} = 0,755 \ mu \ text {F} \\ [/ латекс].

Обсуждение

Общая последовательная емкость C с меньше наименьшей индивидуальной емкости, как было обещано. При последовательном соединении конденсаторов сумма меньше деталей. На самом деле это меньше, чем у любого человека. Обратите внимание, что иногда возможно и более удобно решить уравнение, подобное приведенному выше, путем нахождения наименьшего общего знаменателя, который в данном случае (показаны только вычисления целых чисел) равен 40.Таким образом,

[латекс] \ frac {1} {C _ {\ text {S}}} = \ frac {40} {40 \ mu \ text {F}} + \ frac {8} {40 \ mu \ text {F} } + \ frac {5} {40 \ mu \ text {F}} = \ frac {53} {40 \ mu \ text {F}} \\ [/ latex]

, так что

[латекс] C _ {\ text {S}} = \ frac {40 \ mu \ text {F}} {53} = 0,755 \ mu \ text {F} \\ [/ latex]

Параллельные конденсаторы

На рис. 2а показано параллельное соединение трех конденсаторов с приложенным напряжением. Здесь общую емкость найти легче, чем в последовательном случае. Чтобы найти эквивалентную общую емкость C, , p , сначала отметим, что напряжение на каждом конденсаторе составляет В, , то же самое, что и у источника, поскольку они подключены к нему напрямую через проводник.(Проводники являются эквипотенциальными, поэтому напряжение на конденсаторах такое же, как и на источнике напряжения.) Таким образом, конденсаторы имеют такой же заряд, как и при индивидуальном подключении к источнику напряжения. Общая сумма начислений Q представляет собой сумму отдельных сборов: Q = Q 1 + Q 2 + Q 3 .

Рис. 2. (a) Конденсаторы, включенные параллельно. Каждый из них подключен непосредственно к источнику напряжения, как если бы он был полностью один, поэтому общая параллельная емкость — это просто сумма отдельных емкостей.(b) Эквивалентный конденсатор имеет большую площадь пластины и поэтому может удерживать больше заряда, чем отдельные конденсаторы.

Используя соотношение Q = CV , мы видим, что общий заряд составляет Q = C p V , а отдельные расходы равны Q 1 = C 1 V , Q 2 = C 2 V , и Q 3 = C 3 V .Ввод их в предыдущее уравнение дает

C p V = C 1 V + C 2 V + C 3 V .

Исключая из уравнения В , получаем уравнение для полной емкости параллельно

C p : C p = C 1 + C 2 + C 3 +….

Общая параллельная емкость — это просто сумма отдельных емкостей. (И снова «» указывает на то, что выражение действительно для любого количества конденсаторов, подключенных параллельно.) Так, например, если конденсаторы в Примере 1 были подключены параллельно, их емкость была бы

C p = 1.000 мкФ + 5.000 мкФ + 8.000 мкФ = 14000 мкФ.

Эквивалентный конденсатор для параллельного соединения имеет значительно большую площадь пластины и, следовательно, большую емкость, как показано на рисунке 2b.

Общая емкость параллельно,

C p

Общая емкость параллельно C p = C 1 + C 2 + C 3 +…

Более сложные соединения конденсаторов иногда могут быть последовательными и параллельными. (См. Рис. 3.) Чтобы найти общую емкость таких комбинаций, мы идентифицируем последовательные и параллельные части, вычисляем их емкости, а затем находим общую.

Рис. 3. (a) Эта схема содержит как последовательные, так и параллельные соединения конденсаторов. См. Пример 2 для расчета общей емкости цепи. (b) C 1 и C 2 идут последовательно; их эквивалентная емкость C S меньше, чем у любого из них. (c) Обратите внимание, что C S находится параллельно с C 3 . Таким образом, общая емкость равна сумме C S и C 3 .

Пример 2. Смесь последовательной и параллельной емкостей

Найдите общую емкость комбинации конденсаторов, показанной на рисунке 3. Предположим, что емкости на рисунке 3 известны с точностью до трех десятичных знаков ( C 1 = 1.000 мкФ, C 2 = 3.000 мкФ и C 3 = 8.000 мкФ) и округлите ответ до трех десятичных знаков.

Стратегия

Чтобы найти общую емкость, мы сначала определяем, какие конденсаторы включены последовательно, а какие — параллельно.Конденсаторы C 1 и C 2 включены последовательно. Их комбинация, обозначенная на рисунке C S , параллельна C 3 .

Решение

Поскольку C 1 и C 2 включены последовательно, их общая емкость определяется как [латекс] \ frac {1} {C _ {\ text {S}}} = \ frac {1} { C_ {1}} + \ frac {1} {C_ {2}} + \ frac {1} {C_ {3}} \\ [/ latex]. Ввод их значений в уравнение дает

[латекс] \ frac {1} {C _ {\ text {S}}} = \ frac {1} {C_ {1}} + \ frac {1} {C_ {2}} = \ frac {1} { 1.000 \ mu \ text {F}} + \ frac {1} {5.000 \ mu \ text {F}} = \ frac {1.200} {\ mu \ text {F}} \\ [/ latex].

Инвертирование дает C S = 0,833 мкФ.

Эта эквивалентная последовательная емкость подключена параллельно третьему конденсатору; Таким образом, общая сумма составляет

[латекс] \ begin {array} {lll} C _ {\ text {tot}} & = & C _ {\ text {S}} + C _ {\ text {S}} \\\ text {} & = & 0.833 \ mu \ text {F} +8.000 \ mu \ text {F} \\\ text {} & = & 8.833 \ mu \ text {F} \ end {array} \\ [/ latex]

Обсуждение

Этот метод анализа комбинаций конденсаторов по частям, пока не будет получена общая сумма, может быть применен к более крупным комбинациям конденсаторов.

Сводка раздела

  • Общая емкость последовательно [латекс] \ frac {1} {C _ {\ text {S}}} = \ frac {1} {C_ {1}} + \ frac {1} {C_ {2}} + \ гидроразрыв {1} {C_ {3}} + \ dots \\ [/ latex]
  • Общая емкость параллельно C p = C 1 + C 2 + C 3 +…
  • Если схема содержит комбинацию конденсаторов, включенных последовательно и параллельно, определите последовательную и параллельную части, вычислите их емкости, а затем найдите общую сумму.

Концептуальные вопросы

  1. Если вы хотите хранить большое количество энергии в конденсаторной батарее, подключите ли вы конденсаторы последовательно или параллельно? Объяснять.

Задачи и упражнения

  1. Найдите общую емкость комбинации конденсаторов на Рисунке 4.

    Рисунок 4. Комбинация последовательного и параллельного подключения конденсаторов.

  2. Предположим, вам нужна конденсаторная батарея с общей емкостью 0.750 Ф, и у вас есть множество конденсаторов емкостью 1,50 мФ. Какое наименьшее число вы могли бы связать вместе, чтобы достичь своей цели, и как бы вы их связали?
  3. Какую общую емкость можно получить, соединив вместе конденсаторы 5,00 мкФ и 8,00 мкФ?
  4. Найдите общую емкость комбинации конденсаторов, показанной на рисунке 5.

    Рисунок 5. Комбинация последовательного и параллельного подключения конденсаторов.

  5. Найдите общую емкость комбинации конденсаторов, показанной на рисунке 6.

    Рисунок 6. Комбинация последовательного и параллельного подключения конденсаторов.

  6. Необоснованные результаты. (a) Конденсатор емкостью 8,00 мкФ подключен параллельно другому конденсатору, что дает общую емкость 5,00 мкФ. Какая емкость у второго конденсатора? б) Что неразумного в этом результате? (c) Какие предположения необоснованны или непоследовательны?

Избранные решения проблем и упражнения

1. 0,293 мкФ

3.3,08 мкФ в последовательном соединении, 13,0 мкФ в параллельном соединении

4. 2,79 мкФ

6. (a) –3,00 мкФ; (б) У вас не может быть отрицательного значения емкости; (c) Предположение, что конденсаторы были подключены параллельно, а не последовательно, было неверным. Параллельное соединение всегда дает большую емкость, в то время как здесь предполагалась меньшая емкость. Это могло произойти, только если конденсаторы подключены последовательно.

Расчет тока через группу конденсаторов

Каплевидный колпачок: Во многих случаях для выполнения различных задач в одной и той же точке цепи требуются конденсаторы различных технологий.Одна из наиболее распространенных комбинаций — алюминиевые электролитические и пленочные конденсаторы. Алюминиевые электролитические конденсаторы обрабатывают основную часть емкости, в то время как пленочные конденсаторы помогают забирать часть тока от алюминиевых электролитов, при этом фильтруя более высокие частоты, которые не могут быть с алюминиевыми электролитами.

Расчет текущего

Расчет тока через батарею конденсаторов — не сложный процесс, но к нему часто подходят неправильно, что приводит к более короткому сроку службы выбранных конденсаторов или чрезмерно спроектированной схеме, при которой теряются деньги и пространство.Каждый набор требований имеет золотую середину, где правильные значения емкости, частоты и напряжения позволяют получить наиболее эффективную схему с наибольшим сроком службы. Приведенные ниже шаги содержат уравнения и параметры, на которые следует обратить внимание при выборе конденсаторов, выдерживающих требования к напряжению, току и частоте.

Первым шагом является вычисление импеданса каждого конденсатора, который выбран для установки в батарею, с использованием приведенного ниже уравнения. Исходные конденсаторы могут быть выбраны на основе оценки того, как их параметры (ESR и ток пульсации) будут влиять на требования схемы (напряжение, частота, ток пульсаций).

Значения ESR можно получить из таблиц данных или напрямую от производителя, если они не указаны в таблице. KEMET предлагает KSIM, инструмент моделирования, который предоставляет такие параметры, как ESR, емкость, ток, напряжение и другие характеристики.

ESR необходимо указывать на частоте приложения. В большинстве таблиц данных указано ESR при 100 Гц, 10 кГц или 100 кГц, как показано на рисунках 1 и 2. Использование ESR, измеренного на другой частоте, приведет к переоценке или недооценке конструкции.ESR определяет, какой ток принимает деталь, и будет меняться по мере увеличения и уменьшения частоты.

Рисунок 1: https://content.kemet.com/datasheets/KEM_F3046_C4AE_RADIAL.pdf

Рисунок 2: https://content.kemet.com/datasheets/KEM_A4011_PEG124.pdf

После того, как все импедансы для каждого конденсатора рассчитаны, используйте следующее уравнение, чтобы найти общий импеданс батареи.

Следующий шаг — выяснить, какая часть общего тока через батарею будет проходить через каждый отдельный конденсатор или конденсаторную ветвь.Следующее уравнение показывает, как решить эту проблему.

Обратитесь к таблице данных или другим инструментам, чтобы проверить, какой будет ток пульсации для каждой части (пример, показанный на рисунке 3). Это значение также будет варьироваться в зависимости от частоты и должно быть больше расчетного значения, если вы хотите гарантировать срок службы, указанный производителем в таблице данных.

Рисунок 3: https://content.kemet.com/datasheets/KEM_A4011_PEG124.pdf

Если рассчитанное значение выше, чем указанная текущая мощность, указанная в таблице данных или поставщиком, есть несколько вариантов.

  • Проверьте на производстве, как это может повлиять на срок службы детали.
  • Добавьте дополнительные детали параллельно, чтобы уменьшить ток, идущий на детали в банке.
  • Посмотрите на разные части, у которых есть более высокие возможности.
    • Примечание. Конденсаторы с более низкими значениями ESR будут иметь более высокие характеристики пульсации тока.

Ниже приведен пример, который поможет определить, как решить эту проблему.

Параметры

  • Общая необходимая емкость: 800 мкФ
  • Приложенное напряжение: 450 В постоянного тока
  • Пульсационный ток: 20 шт.
  • Частота: 10 кГц
  • Температура окружающей среды: 65 ° C
  • Нет прекращения или требований к месту

Первая оценка включает следующую настройку.Детали были выбраны на основе значения общей емкости, номинального напряжения и допустимого тока, указанных в таблицах данных.

1. Получите значения ESR из таблиц данных для деталей на основе конкретной используемой частоты. Частота, используемая в этом расчете, составляет 10 кГц.

http://www.kemet.com/Lists/ProductCatalog/Attachments/395/KEM_A4026_ALC40.pdf

http://www.kemet.com/Lists/ProductCatalog/Attachments/366/KEM_F3046_C4AE_RADIAL.pdf

Примечание : Не во всех таблицах данных указано СОЭ на используемой частоте, но имейте в виду, что при уменьшении частоты СОЭ увеличивается.

2. Используйте следующие уравнения, чтобы найти полное сопротивление конденсаторов, подключенных параллельно.

3. Используйте следующее уравнение, чтобы найти полное сопротивление банка.

4. Используйте следующие уравнения, чтобы найти ток через каждый конденсатор.

5. Вернитесь к таблице данных, чтобы узнать о текущих возможностях каждой детали, чтобы то, что помещается на деталь (расчетное значение), было меньше, чем то, что указано в таблице.

http://www.kemet.com/Lists/ProductCatalog/Attachments/395/KEM_A4026_ALC40.pdf

http://www.kemet.com/Lists/ProductCatalog/Attachments/366/KEM_F3046_C4AE_RADIAL.pdf

На алюминиевом электролитическом элементе слишком большой ток, поэтому необходимо выбирать разные детали. Важно искать алюминиевые электролитические детали с более высокими значениями ESR и пленочные конденсаторы с более низкими значениями ESR, чтобы отводить больше тока от алюминиевых электролитов.

Параметры (без изменений)

  • Общая необходимая емкость: 800 мкФ
  • Приложенное напряжение: 450 В постоянного тока
  • Ток пульсации: 20Arms
  • Частота: 10 кГц
  • Температура окружающей среды: 65 ° C
  • Нет прекращения или требований к месту

Вторая оценка включает следующую настройку. Детали были выбраны на основе значения общей емкости, номинального напряжения и допустимого тока, указанных в таблицах данных.Они также были выбраны с алюминиевыми электролитическими конденсаторами, имеющими более высокие значения ESR, и пленочными конденсаторами, имеющими более низкие значения ESR, для подачи большего тока на пленочные конденсаторы.

1. Получите значения ESR из таблиц данных для деталей на основе конкретной используемой частоты. Частота, используемая в этом расчете, составляет 10 кГц.

http://www.kemet.com/Lists/ProductCatalog/attachments/726/KEM_A4075_ALS70_71.pdf

http: // www.kemet.com/Lists/ProductCatalog/Attachments/366/KEM_F3046_C4AE_RADIAL.pdf

Примечание : Не во всех таблицах данных указано СОЭ на используемой частоте, но имейте в виду, что при уменьшении частоты СОЭ увеличивается.

2. Используйте следующие уравнения, чтобы найти полное сопротивление конденсаторов, подключенных параллельно.

3. Используйте следующее уравнение, чтобы найти полное сопротивление банка.

4. Используйте следующие уравнения, чтобы найти ток через каждый конденсатор.

5. Вернитесь к таблице данных, чтобы узнать о текущих возможностях каждой детали, чтобы то, что помещается на деталь (расчетное значение), было меньше, чем то, что указано в таблице.

http://www.kemet.com/Lists/ProductCatalog/attachments/726/KEM_A4075_ALS70_71.pdf

http://www.kemet.com/Lists/ProductCatalog/Attachments/366/KEM_F3046_C4AE_RADIAL.pdf

Все рассчитанные значения ниже текущих возможностей, перечисленных в таблицах, так что это хорошая комбинация частей.

В заключение, использование первых четырех конденсаторов (серии ALC70 и C4AE) приводит к слишком большому току на алюминиево-электролитических конденсаторах. При такой конфигурации эти детали будут нагреваться, и их срок службы будет намного короче, чем ожидалось. Вторая конфигурация (серии ALC70 и C4AE) — хорошее решение, и на срок службы деталей это не повлияет. Если требуются детали меньшего размера, поиск можно продолжить, пробуя различные значения / конфигурации.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *