Что значит блок питания импульсный: Как работает импульсный блок питания ⋆ diodov.net

Автор: | 30.09.1970

Содержание

Как работает импульсный блок питания ⋆ diodov.net

Подробно рассмотрим, как работает импульсный блок питания (ИБП) любого типа. Сегодня такие компоненты являются основными источниками электрической энергии любой электронной аппаратуры. Аудио аппаратуру мы в счет не берем. Там по-прежнему доминируют линейные или трансформаторные блоки питания.

Концепция ИБП известна давно. Однако реализация ее стала возможной относительно недавно. Этому способствовало появление управляемых полупроводниковых ключей с требуемыми характеристиками. В первую очередь речь идет о полевых транзисторах MOSFET. Сегодня MOSFET вытеснили практически все другие управляемые полупроводниковые приборы в области преобразователей электрической энергии малой и средней мощности. В преобразователях большой мощности лидирующие позиции занимают IGBT транзисторы, а также некоторые виды тиристоров.

Главное и неоспоримое преимущество импульсных блоков питания по сравнению с линейными (трансформаторными) БП – это значительно меньший вес и габариты при равных мощностях. Для сравнения можно взять импульсный блок питания компьютера мощностью 500 Вт и только один трансформатор мощностью 500 ВА. Разница, особенно по массе, будет ощутима.

Существует много схем ИБП. Однако все они сводятся к тому, чтобы снизить в первую очередь массу и габариты трансформатора. Почему именно трансформатора? Потому что он является самым громоздким, тяжелым и дорогим элемент блока питания.

Чтобы хорошо представлять, как работает импульсный блок питания, сначала рассмотрим классическую схему линейного БП.

Схема линейного блока питания

Основные задачи любого промышленного БП заключаются в снижении переменного напряжения 220 В (230 В) до требуемой величины, затем его выпрямление, сглаживание и стабилизация.

Поэтому любая схема линейного бока питания обязательно содержат как минимум следующие элементы: трансформатор, выпрямитель, фильтр, узел стабилизации. Назначение каждого элемента было более полно рассказано здесь.

Теперь, глядя на составляющие функциональной схемы линейного БП, давайте рассуждать, какие элементы приводят к росту его массы и веса. В качестве выпрямителя чаще служит диодный мост. Снизить его размеров не даст особого эффекта. Да и реализовать этот будет затруднительно.

Узел стабилизации может быть реализован по-разному. Поэтому на нем мы тоже сэкономить мало что сможем. Остаются только два элемента: фильтр и трансформатор. Фильтр представляет собой электролитический конденсатор большой емкости. Но изменение его параметров, как мы увидим далее, не позволит получить сколь-нибудь ощутимый выигрыш. Остается исследовать возможности способы минимизации трансформатора.

Основная задача его заключается в передаче мощности со стороны источника высокого на сторону низкого напряжения. При этом необходимо обеспечить гальваническую развязку высоковольтных с низковольтными цепями. Гальваническая развязка необходима для преимущественного большинства устройств по условиям безопасности, как персонала, так и низковольтного оборудования. А трансформатор, как никакой другой элемент выполняет эти и другие условия. При этом он имеет максимальный коэффициент полезного действия, достигающий 99 %. По этой причине ему до сих пор не могут найти альтернативу, за что приходится расплачиваться повышенной массой и размерами в целом БП.

Безтранформаторные источники питания

Конечно, всегда возникал вопрос: а можно ли вообще обойтись без трансформатора? Здесь ответ неоднозначный. И можно и нельзя. Более того, существуют безтрансформаторные источники питания. Для снижения напряжения применяют конденсатор. Конденсатор характеризуется реактивным сопротивлением при работе в цепях переменного тока. Именно это свойство благополучно используется. Однако реактивное сопротивление конденсатора зависит обратно пропорционально от его емкости. Поэтому с увеличением нагрузки необходимо применять конденсатор большей емкости, что очень сказывается на его размерах. Кроме того возрастает его цена, поскольку он должен быть рассчитан на 400…450 В. Помимо всего прочего, использование реактивного сопротивления негативно влияет на качестве электроэнергии питающей сети. Снижается коэффициент мощности cosφ. Но самый главный недостаток заключается в отсутствии гальванической развязки. Это исключает применение подобных схем в преимущественном большинстве радиоэлектронной аппаратуре.

Как снизить массу и габариты трансформатора

Так вот, мощность любого узла ИБП определяется всего двумя параметрами: напряжением и током.

P = U∙I.

Полная мощность трансформатора (Т) также определяется произведением тока на напряжение. Поэтому давайте рассмотрим, как зависят габариты Т от величины приложенного

U и протекающего I. Возможно, здесь у нас получится на что-то повлиять.

Напряжение или, точнее говоря, ЭДС данного электромагнитного устройства определяется частотой приложенного напряжения f, количеством витков w и магнитным потоком Φ.

E = 4,44∙f∙w∙Φ

Коэффициент 4,44 уберем для упрочения, поскольку он соответствует синусоидальной форме тока. В импульсных блоках питания, где форма сигнала имеет вид прямоугольника, это коэффициент имеет другое значение.

E ~ f∙w∙Φ

Магнитный поток представляет собой произведение магнитной индукции

B на площадь поперечного сечения сердечника магнитопровода Sс.

E ~ f∙w∙B∙Sс

Давайте поразмыслим над этой формулой с интересующей нас позиции. Размеры Т определяются размерами его сердечника и обмотками. Упрощенно говоря, мы можем вполне обосновано сказать, что габариты сердечника зависят от площади поперечного сечения сердечника (магнитопровода) Sс. А габариты обмотки зависят от числа витков w.

Теперь становится очевидно, что для сохранения прежней величины электродвижущей силы E при снижении числа витков w и площади поперечного сечения

Sс, а соответственно и габаритов трансформатора, необходимо повышать или частоту или индукцию или эти два параметра одновременно.

Преимущественное большинство сердечников промышленных трансформаторов выполняются из электротехнической стали. Такая сталь имеет индукцию насыщения порядка 1,7 Тл. Это довольно большое значение индукции. Выше только у чистого железа, обладающего максимально возможной индукцией из всех магнитных материалов, и составляет чуть более 2 Тл. К сожалению, чистое железо не пригодно к использованию в электромагнитных устройствах вследствие сильных потерь энергии при перемагничивании.

Альтернативные магнитные материалы

Также в ряде стран применяется пермаллой. Пермаллой имеет несколько меньшую индукцию, чем электротехническая стать, но обладает большим электрическим сопротивлением. Благодаря чему снижаются потери на вихревые токи, а соответственно и потери холостого хода.

Относительно недавно на рынке в доступной цене появились аморфные и нанокристаллические сплавы. Они обладают высоким электрическим сопротивлением, при этом индукция их приближается к электротехническим сплавам. Кроме того они обладают рядом положительных свойств, превосходящих другие магнитные материалы. Но на этом мы здесь останавливаться не будем.

Однако индукция известных на сегодняшний день магнитных материалов и сплавов не достигает величины, значительно превосходящей индукцию электротехнической стали, то есть более 1,7 Тл. Поэтому сейчас невозможно существенно снизить габариты электромагнитного устройства за счет применения новых магнитных материалов. Поэтому остается единственный способ, который даст ощутимое снижение массы и размеров – это повышение частоты

f переменного тока.

Как работает импульсный блок питания электронных устройств

Мы знаем, что в сети 220 В или 230 В f равна 50 Гц, отсюда возникает вопрос: как ее повысить? А делается это следующим образом. Сначала переменное напряжение 220 В, 50 Гц выпрямляется с помощью обычного диодного моста. Затем оно сглаживается электролитическим конденсатором большей емкости. Далее сглаженное напряжение снова преобразуется в переменное, но уже значительно большей частоты. В современных импульсных блоках питания она составляет порядка единиц мегагерц. И уже это высокочастотное напряжение подается на обмотку трансформатора. Это позволяет значительно снизить его размеры при сохранении прежнего значения электродвижущей силы. Затем сниженное напряжение со вторичной обмотки снова выпрямляется, сглаживается, и стабилизируется.

Постоянное напряжение преобразуется в переменное с помощью инвертора. Транзисторы инвертора работают в ключевом режиме, что приводит к появлению значительных импульсов тока. Поэтому на входе первого выпрямителя обязательно устанавливают дроссель для снижения уровня пульсаций тока, вызванных работой инвертора. Кроме того, для борьбы и электромагнитными импульсами, ИБП полностью экранируют.

Именно по причине этих пульсаций ИБП не применяются в аудиотехнике. В первую очередь это относиться к усилителям звука. Они вместе с полезным аудиосигналом могут усилить и помехи или пульсации, создаваемые полупроводниковыми приборами, работающими в ключевом режиме. В конечном итоге это негативно отобразится на качестве звука.

Сечение провода тр-ра по-прежнему рассчитывается на аналогичный ток. Однако в качестве магнитопровода электротехническая сталь не применяется, поскольку на высоких частотах возникают сильных потери энергии, вызванные действием вихревых токов. Поэтому применяют магнитные материалы с максимально высоким электрическим сопротивлением. К ним относятся ферриты и различного рода магнитодиэлектрики.

ШИМ-контроллер

Работой полупроводниковых приборов инвертора управляет ШИМ-контроллер. ШИМ-контроллер может выполняться в виде отдельной микросхемы или в едином корпусе с полупроводниковыми ключами. Для поддержания заданного уровня напряжения на нагрузке в не зависимости от изменения ее параметров и других воздействующих факторов, необходимо изменять параметры широтно-импульсной модуляции. За это отвечает ШИМ-контроллер, который получает сигнал по обратной связи. В качестве элемента, образующего обратную связь применяется оптопара. Может применяться и другой радиоэлектронный элемент, как правило, способный осуществить гальваническую развязку.

Теперь должно быть понятно, как работает импульсный блок питания. Его схема состоит из входного фильтра, входного выпрямителя, сглаживающего входного фильтра, инвертора, импульсного трансформатора, выходного выпрямителя и выходного фильтра.

В качестве входного фильтра применяется дроссель. Сглаживающими фильтрами служат электролитические конденсаторы большей емкости.

Мощный импульсный блок питания?

Значительно повысить f удается только в относительно маломощных ИБП с точки зрения силовой электроники. В преобразователях электрической энергии большой мощности – десятки, сотни и тысячи киловатт, сколь существенно увеличить частоту не получится. Это вызвано отсутствием транзисторов или тиристоров, способных быстро переключать большую нагрузку, сохраняя при этом приемлемый уровень потерь энергии. Максимум удается повысить f до тысячи герц, 400 Гц, а то и вовсе ниже. К тому же возникают трудности с охлаждением таких преобразовательных установок.

Потери в полупроводниковых ключах зависят от приложенного к ним напряжения, протекающего I и частоты переключения. С ростом f потери энергии в полупроводниковых ключах сильно возрастают. Поэтому существенно снижается коэффициент полезного действия всей преобразовательной установки. Отсюда данный способ пока что не находит применения для мощных преобразователей и является малоэффективным.

Но и здесь был найден выход. Все усилия были направлены в сторону уменьшения размеров и веса обмоток. В преобразователях она может достигать нескольких тонн. Если получится существенно уменьшить ее размеры, тогда можно домотать некоторое количество витков и за счет этого снизить габариты магнитопровода при сохранении прежнего значения электродвижущей силы.

Масса меди обмоток mо зависит от суммарной длины одного витка lв, их числа w, площади поперечного сечения Sв и удельного веса меди γм.

mо = lвwSвγм.

Длина витка lв определяется его диаметром dв, поэтому можем переписать предыдущее выражение следующим образом:

mо = πdвwSвγм.

В свою очередь диаметр dв определяет индуктивность Т. Поэтому его мы уменьшить не можем, поскольку это в конечном итоге повлечет за собой уменьшение ЭДС, а это не допустимо.

Также нельзя снизить удельный вес меди. Остается снижать площадь поперечно сечения витка.

Она в свою очередь зависит от величины протекающего I и допустимой плотности тока j.

Sв = Ij.

Величину тока мы также снизить не можем, поскольку она определяет мощность трансформатора при заданном значении электродвижущей силы. Остается только один способ – увеличить допустимую плотность j.

Сверхпроводники

Эта величина для меди в среднем находится в пределах от 8 до 10 А/мм2. Для обмоток электрических машин она будет иметь меньшее, а для монтажных проводов или линий электропередач – большее значение.

Величина j показывает, какой максимальный ток можно пропустить через заданное сечение проводника. Для простоты примем допустимое значение j = 10 А/мм2. Это значит, что через медный провод сечением 1 мм2 можно пропустить I величиной 1 А. Если превысить эту величину, то он будет перегреваться, что недопустимо. Главная причина заключается в перегреве изоляции, которая для электрических машин обходится дороже стоимости самого провода. С ростом температуры эксплуатационный срок изоляции резко снижается. Отсюда преждевременная постановка на ремонт и затратная перемотка изоляции.

Если проводник принудительно охлаждать, то через ту же Sв можно пропустить больший I. Именно таким способом удается существенно уменьшить сечение Sв. Применяют так называемые сверхпроводящие обмотки. Они находятся в специальной герметичной емкости, заполненной жидким азотом. Точка кипения азота чуть более -195 °С. Жидкий азот хорош тем, что он не взрывоопасен и не ядовит.

Благодаря применению жидкого азота снижается сопротивление проводника. Это позволяет повысить j почти в 30 раз, не перегревая его. А соответственно снизить площадь поперечного сечения обмоточного провода, что в свою очередь приводит к снижению веса электромагнитного устройства.

Подытожим сказанное выше. Для снижения массы и габаритов ИБП малой и средней мощности повышают частоту подводимого напряжения к обмоткам трансформатора за счет специальных схемных решений. В силовых преобразователях такой способ пока что трудно реализуем по причине отсутствия полупроводниковых ключей с приемлемыми коммутационными характеристиками. Единственный рациональный способ заключается в использовании сверхпроводящих обмоток.

Теперь, я надеюсь, Вам стало понятно, как работает импульсный блок питания и почему он имеет такую структуру.

Еще статьи по данной теме

Чем отличается импульсный блок питания от обычного: особенности и отличия

Обновлено: 23.04.2021 12:51:21

Подавляющее большинство современной электроники работает на постоянном токе с малыми значениями силы и напряжения. Например, роутеры потребляют 12 вольт и 5 ампер, а смартфоны в большинстве случаев – 5 вольт и 2 ампера. Вот только в бытовой сети распространяется совершенно другой ток – переменный, с частотой 60 Гц, напряжением 220 вольт и (обычно) силой до 6 ампер.

Соответственно, для использования электронных приборов в бытовой сети этот ток надо как-то преобразовать. Для этих целей и используются блоки питания. Их задача – трансформация тока для придания ему определённых параметров напряжения, силы, а также частоты (превращения переменного в постоянный).

И если требуется выбрать подходящий блок питания либо соорудить самостоятельно, то чаще всего можно встретить два варианта – обычный, он же трансформаторный, и импульсный. И в чём разница, кроме конструкционной сложности, не всегда понятно. Поэтому в этой статье мы разберёмся, чем отличается импульсный блок питания от обычного, рассмотрим их особенности и отличия.

Обычные блоки питания (трансформаторного типа)

Трансформаторные блоки питания – одни из первых устройств для преобразования электричества. Они относятся к аналоговому типу, отличаются конструкционной простотой и сравнительно высокой надёжностью. Впрочем, и существенные недостатки вроде слишком крупных габаритов у них также имеются.

Основной функциональный элемент таких БП – трансформатор. Он состоит из двух индукционных катушек. На первую подаётся электричество из бытовой 220-вольтовой сети и создаёт электромагнитное поле. Оно, в свою очередь, наводит индукцию и создаёт электродвижущую силу на второй. Таким образом достигается понижение напряжения.

В дальнейшем электрический ток, созданный на понижающей катушке, передаётся на выпрямляющее устройство. Как правило, оно состоит из нескольких силовых диодов, включённых по схеме моста. Для сглаживания пульсирующего напряжения используется конденсатор, подключённый параллельно диодному мосту, а затем силовые транзисторы его стабилизируют.

В итоге на выходе формируется постоянный ток заданного напряжения и силы. Для регулирования параметров его работы используются специальные резисторы подстройки, включаемые в схему стабилизации.

Обычные БП (трансформаторного типа) характеризуются максимальной конструкционной простотой. В принципиальной схеме элементарного устройства – всего три детали: система катушек, диодный мост и конденсатор.

Ключевые достоинства обычных блоков питания:

  1. Простота сборки и конструирования. БП необходимой мощности можно собрать самостоятельно – достаточно лишь понимать принцип работы и точно осознавать, для каких целей планируется использовать аппарат;

  2. Высокая надёжность и долговечность. При правильной эксплуатации срок работы аппаратов практически не ограничен. Так, сегодня ещё можно найти функционирующие модели, выпущенные более нескольких десятилетий назад;

  3. Доступность комплектующих. Все необходимые детали можно приобрести на радиорынках, у радиолюбителей и в специальных магазинах, заказывать какие-то определённые микросхемы из-за рубежа не требуется;

  4. Не создают паразитные радиоволновые токи. Благодаря этому помехи в питающей сети или в конечных потребителях практически не наблюдаются.

Ключевые недостатки обычных блоков питания:

  1. Низкий КПД. При передаче электричества трансформаторным способом огромная часть мощности просто теряется. Кроме того, из-за использования стабилизатора на выходе для получения стабильных параметров работы часть КПД дополнительно теряется;

  2. Крупногабаритные. Причём чем мощнее БП – тем больше его вес и размеры. Как следствие, высокомощные и вовсе могут быть маломобильными;

  3. Создают значительное электромагнитное поле. Тем самым они могут образовывать наводки в других линиях передачи сигнала – например, коаксиальных кабелях или «витой паре».

Все эти недостатки оказываются настолько критическими, что сегодня обычные БП в быту практически не используются. Вместо этого применяются импульсные.

Импульсные блоки питания

Импульсные блоки питания имеют сложную конструкцию и являются устройствами инверторного типа. Их ключевое отличие от обычных заключается в том, что входное напряжение подаётся сразу на выпрямитель. Затем оно формирует импульсы определённой частоты. За это отвечает отдельная подсистема управления, так что импульсные БП являются полноценными цифровыми устройствами.

Поскольку импульсные БП отличаются конструкционной и принципиальной сложностью, рассматривать схему их работы в рамках этой статьи не целесообразно. и

  1. Ток из сети поступает на сетевой фильтр, минимизирующий входящие и исходящие искажения;

  2. Преобразователь трансформирует синусоиду переменного тока в импульсный постоянный ток;

  3. Инвертор, контролируемый через модуль управления, формирует из импульсного постоянного тока прямоугольные высокочастотные сигналы;

  4. Ток поступает на импульсный трансформатор, который подаёт напряжение на различные элементы самого БП, а также на нагрузку;

  5. После этого ток поступает на выходной выпрямитель, а затем сглаживается на выходном фильтре.

Такая система обеспечивает не только высокий коэффициент полезного действия, но и малые размеры устройства. Причём чем выше частота импульсов – тем компактнее БП за счёт уменьшения габаритов трансформатора.

Ключевые достоинства импульсных блоков питания:

  1. Высокий КПД, составляющий, как правило, около 98%. Небольшие потери создаются их-за переходных процессов, возникающих при переключении ключа. Но они слишком незначительны, чтобы брать их в расчёт;

  2. Компактные размеры и малый вес. Это достигается за счёт того, что импульсным БП не требуется массивный трансформатор.

Ключевые недостатки импульсных блоков питания:

  1. Конструкционная сложность. Собрать такое устройство в домашних условиях без знаний в области электроники или электротехники практически невозможно;

  2. Заметный нагрев при работе. Поэтому высокомощные импульсные БП оснащаются дополнительными системами охлаждения, которые приводят к увеличению размера и массы устройства;

  3. Наличие высокочастотных помех. Как следствие, для использования в чувствительной аппаратуре такие блоки питания оснащаются фильтром помех, но и он не даёт 100% защиты от такого «мусорного сигнала»;

  4. Мощность нагрузки должна входить в номинальный диапазон. При превышении или понижении её будут наблюдаться изменения выходного напряжения. Как правило, производители предусматривают это явление и устанавливают защиту от подобных нештатных ситуаций.

Компактные размеры и высокое значение КПД помогли импульсным БП распространиться максимально широко. Сегодня они применяются в зарядных устройствах мобильной электроники, компьютерной и бытовой техники, а также в системах электронного балласта осветительных приборов.

Сравнение импульсного и обычного блоков питания

Сравним эти два типа устройств, определив, какие лучше использовать в той или иной ситуации.

Тип блока питания

Обычный (трансформаторный)

Импульсный

Принцип работы

Напряжение сначала понижается, а затем выравнивается

Напряжение сначала преобразуется, а затем понижается

Использование

Некоторые высокоточные и чувствительные к ВЧ-помехам устройства

Практически повсеместно

Коэффициент полезного действия

Небольшой, особенно с учётом потерь на стабилизаторе

Как правило, 98%

Габариты

Как правило, крупные

Как правило, малые

Высокочастотные помехи в выходном токе

Нет

Могут быть

Требование максимальной и минимальной мощностей нагрузки

Нет

Да

При прочих равных предпочтительнее использовать импульсные БП. Они обеспечивают больший КПД, а ещё весят от нескольких десятков граммов. Но в некоторых высокоточных, прецизионных устройствах лучше применять обычные (трансформаторные) модели, поскольку они не засоряют выходной сигнал помехами.



Оцените статью
 

Всего голосов: 1, рейтинг: 5

что это такое, принцип работы, схема, назначение

Импульсный блок питания служит для преобразования входного напряжения до величины, необходимой внутренним элементам устройства. Иное название импульсных источников, получившее широкое распространение, — инверторы.

Что это такое?

Инвертор — это вторичный источник питания, который использует двойное преобразование входного переменного напряжения. Величина выходных параметров регулируется путем изменения длительности (ширины) импульсов и, в некоторых случаях, частоты их следования. Такой вид модуляции называется широтно-импульсным.

Принцип работы импульсного блока питания

В основе работы инвертора лежит выпрямление первичного напряжения и дальнейшее его преобразование в последовательность импульсов высокой частоты. Этим он отличается от обычного трансформатора. Выходное напряжение блока служит для формирования сигнала отрицательной обратной связи, что позволяет регулировать параметры импульсов. Управляя шириной импульсов, легко организовать стабилизацию и регулировку выходных параметров, напряжения или тока. То есть это может быть как стабилизатор напряжения, так и стабилизатор тока.

Количество и полярность выходных значений может быть самым различным в зависимости от того, как работает импульсный блок питания.

Разновидности блоков питания

Применение нашли несколько типов инверторов, которые отличаются схемой построения:

  • бестрансформаторные;
  • трансформаторные.

Первые отличаются тем, что импульсная последовательность поступает непосредственно на выходной выпрямитель и сглаживающий фильтр устройства. Такая схема имеет минимум комплектующих. Простой инвертор включает в себя специализированную интегральную микросхему — широтно-импульсный генератор.

Из недостатков бестрансформаторных устройств главным является то, что они не имеют гальванической развязки с питающей сетью и могут представлять опасность удара электрическим током. Также они обычно имеют небольшую мощность и выдают только 1 значение выходного напряжения.

Более распространены трансформаторные устройства, в которых высокочастотная последовательность импульсов поступает на первичную обмотку трансформатора. Вторичных обмоток может быть сколько угодно много, что позволяет формировать несколько выходных напряжений. Каждая вторичная обмотка нагружена на собственный выпрямитель и сглаживающий фильтр.

Мощный импульсный блок питания любого компьютера построен по такой схеме, которая имеет высокую надежность и безопасность. Для сигнала обратной связи здесь используется напряжение 5 или 12 Вольт, поскольку эти значения требуют максимально точной стабилизации.

Использование трансформаторов для преобразования напряжения высокой частоты (десятки килогерц вместо 50 Гц) позволило многократно снизить их габариты и массу и использовать в качестве материала сердечника (магнитопровода) не электротехническое железо, а ферромагнитные материалы с высокой коэрцитивной силой.

На основе широтно-импульсной модуляции построены также преобразователи постоянного тока. Без использования инверторных схем преобразование было связано с большими трудностями.

Схема БП

В схему самой распространенной конфигурации импульсного преобразователя входят:

  • сетевой помехоподавляющий фильтр;
  • выпрямитель;
  • сглаживающий фильтр;
  • широтно-импульсный преобразователь;
  • ключевые транзисторы;
  • выходной высокочастотный трансформатор;
  • выходные выпрямители;
  • выходные индивидуальные и групповые фильтры.

Назначение помехоподавляющего фильтра состоит в задерживании помех от работы устройства в питающую сеть. Коммутация мощных полупроводниковых элементов может сопровождаться созданием кратковременных импульсов в широком спектре частот. Поэтому здесь необходимо в качестве проходных конденсаторов фильтрующих звеньев использовать разработанные специально для этой цели элементы.

Выпрямитель служит для преобразования входного переменного напряжения в постоянное, а установленный следом сглаживающий фильтр устраняет пульсации выпрямленного напряжения.

В том случае когда используется преобразователь постоянного напряжения, выпрямитель и фильтр становятся ненужными, и входной сигнал, пройдя цепи помехоподавляющего фильтра, подается непосредственно на широтно-импульсный преобразователь (модулятор), сокращенно ШИМ.

ШИМ является самой сложной частью схемы импульсного источника питания. В его задачу входят:

  • генерация высокочастотных импульсов;
  • контроль выходных параметров блока и коррекция импульсной последовательности в соответствии с сигналом обратной связи;
  • контроль и защита от перегрузок.

Сигнал с ШИМ подается на управляющие выводы мощных ключевых транзисторов, включенных по мостовой или полумостовой схеме. Силовые выводы транзисторов нагружены на первичную обмотку выходного трансформатора высокой частоты. Вместо традиционных биполярных транзисторов используются IGBT- или MOSFET-транзисторы, которые отличаются малым падением напряжения на переходах и высоким быстродействием. Улучшенные параметры транзисторов способствуют уменьшению рассеиваемой мощности при одинаковых габаритах и технических параметрах конструкции.

Выходной импульсный трансформатор использует одинаковый с классическим принцип преобразования. Исключением является работа на повышенной частоте. Как следствие, высокочастотные трансформаторы при одинаковых передаваемых мощностях имеют меньшие габариты.

Напряжение со вторичной обмотки силового трансформатора (их может быть несколько) поступает на выходные выпрямители. В отличие от входного выпрямителя, диоды выпрямителя вторичной цепи должны иметь повышенную рабочую частоту. Наилучшим образом на данном участке схемы работают диоды Шоттки. Их преимущества перед обычными:

  • высокая рабочая частота;
  • сниженная емкость p-n перехода;
  • малое падение напряжения.

Назначение выходного фильтра импульсного блока питания — снижение до необходимого минимума пульсаций выпрямленного выходного напряжения. Поскольку частота пульсаций намного выше, чем у сетевого напряжения, то нет необходимости в больших значениях емкости конденсаторов и индуктивности у катушек.

Сфера применения импульсного блока питания

Импульсные преобразователи напряжения применяются в большинстве случаев вместо традиционных трансформаторных с полупроводниковыми стабилизаторами. При одинаковой мощности инверторы отличаются меньшими габаритными размерами и массой, высокой надежностью, а главное — более высоким КПД и возможностью работать в широком диапазоне входного напряжения. А при сравнимых габаритах максимальная мощность инвертора в несколько раз выше.

В такой области, как преобразование постоянного напряжения, импульсные источники практически не имеют альтернативной замены и способны работать не только по понижению напряжения, но и вырабатывать повышенное, организовывать смену полярности. Высокая частота преобразования существенно облегчает фильтрацию и стабилизацию выходных параметров.

Малогабаритные инверторы на специализированных интегральных микросхемах используются в качестве зарядных устройств всевозможных гаджетов, а их надежность такова, что срок службы зарядного блока может превосходить время работоспособности мобильного устройства в несколько раз.

Драйверы питания на 12 Вольт для включения светодиодных источников освещения также построены по импульсной схеме.

Как сделать импульсный блок питания своими руками

Инверторы, особенно мощные, имеют сложную схемотехнику и доступны для повторения только опытным радиолюбителям. Для самостоятельной сборки сетевых источников питания можно рекомендовать несложные маломощные схемы с использованием специализированных микросхем ШИМ-контроллеров. Такие ИМС имеют малое количество элементов обвязки и имеют отработанные типовые схемы включения, которые практически не требуют регулировки и настройки.

При работе с самодельными конструкциями или ремонте промышленных устройств необходимо помнить, что часть схемы всегда будет находиться под потенциалом сети, поэтому требуется соблюдать меры безопасности.

Импульсные блоки питания.Виды и работа.Особенности и применение

Практически в каждом электронном приборе есть блок питания – важный элемент монтажной схемы. Блоки применяются в устройствах, требующих пониженного питания. Базовой задачей блока питания считается уменьшение сетевого напряжения. Первые импульсные блоки питания сконструированы после изобретения катушки, которая работала с переменным током.

Применение трансформаторов дало толчок развития блоков питания. После выпрямителя тока осуществляется выравнивание напряжения. В блоках с преобразователем частоты этот процесс проходит по-другому.

В импульсном блоке основу составляет инверторная система. После выпрямления напряжения образуются прямоугольные импульсы с высокой частотой, подаются на фильтр выхода низкой частоты. Импульсные блоки питания преобразовывают напряжение, отдают мощность на нагрузку.

Рассеивание энергии от импульсного блока не происходит. От линейного источника идет рассеивание на полупроводниках (транзисторах). Его компактность и малый вес также дает превосходство над трансформаторными блоками при одинаковой мощности, поэтому часто линейные блоки заменяют импульсными.

Принцип действия

Работа ИБП простой конструкции следующая. Если входной ток является переменным, как в большинстве бытовых приборах, то сначала происходит преобразование напряжения в постоянное. Некоторые конструкции блоков имеют переключатели, удваивающие напряжение. Это делается для того, чтобы подключаться к сети с разным номиналом напряжения, например, 115 и 230 вольт.

Выпрямитель выравнивает переменное напряжение и на выходе отдает постоянный ток, который поступает в фильтр конденсаторов. Ток от выпрямителя выходит в виде малых импульсов высокой частоты. Сигналы обладают высокой энергией, за счет которой снижается коэффициент мощности трансформатора импульсов. Благодаря этому габариты импульсного блока небольшие.

Чтобы скорректировать уменьшение мощности в новых блоках питания применяют схему, в которой ток на входе получается в виде синуса. По такой схеме смонтированы блоки в компьютерах, видеокамерах и других устройствах. Импульсный блок работает от постоянного напряжения, проходящего через блок, не изменяясь. Такой блок называют обратноходовым. Если он служит для 115 В, для работы на постоянном напряжении необходимо уже 163 вольта, это рассчитывается как (115 × √2).

Для выпрямителя такая схема вредна, так как половина диодов не используется в работе, это вызывает перегрев рабочей части выпрямителя. Долговечность в этом случае снижается.

После выпрямления напряжения сети в действие вступает инвертор, который преобразовывает ток. Пройдя через коммутатор, имеющий большую энергию выхода, из постоянного получается переменный ток. С обмоткой трансформатора в несколько десятков витков и частотой сотни герц блок питания работает в качестве усилителя низкой частоты, она получается больше 20 кГц, она не доступна слуху человека. Коммутатор изготовлен на транзисторах с многоступенчатым сигналом. Такие транзисторы имеют низкое сопротивление, высокую возможность прохода токов.

Схема работы ИБП

В сетевых блоках вход и выход изолируют между собой, в импульсных блоках ток применяется для первичной обмотки высокой частоты. На вторичной обмотке трансформатор создает нужное напряжение.

Для напряжения выхода более 10 В применяют кремниевые диоды. На низких напряжениях ставят диоды Шоттки, которые имеют достоинства:
  • Быстрое восстановление, что дает возможность иметь малые потери.
  • Малое падение напряжения. Для снижения напряжения выхода применяют транзистор, в нем выпрямляется основная часть напряжения.

Далее напряжение сглаживается фильтром, в него входят конденсатор, дроссель. Для частот коммутации выше требуются составляющие с малой индуктивностью и емкостью.

Схема импульсного блока минимального размера

В простой схеме ИБП вместо трансформатора применен дроссель. Это преобразователи для понижения или повышения напряжения, относятся к самому простому классу, применяется один переключатель и дроссель.

Некоторые виды ИБП
  • Простой ИБП на IR2153, распространен в России.
  • Импульсные блоки питания на TL494.
  • Импульсные блоки питания на UC3842.
  • Гибридного типа, из энергосберегающей лампы.
  • Для усилителя с повышенными данными.
  • Из электронного балласта.
  • Регулируемый ИБП, механическое устройство.
  • Для УМЗЧ, узкоспециализированный блок питания.
  • Мощный ИБП, имеет высокие характеристики.
  • На 200 В – на напряжение не более 220 вольт.
  • Сетевой ИБП на 150 ватт, только для сети.
  • Для 12 В – нормально работает при 12 вольтах.
  • Для 24 В – работает только на 24 вольта.
  • Мостовой – применена мостовая схема.
  • Для усилителя на лампах – характеристики для ламп.
  • Для светодиодов – высокая чувствительность.
  • Двухполярный ИБП, отличается качеством.
  • Обратноходовый, имеет повышенные напряжение и мощность.
Особенности

Простой ИБП может состоять из трансформаторов малых размеров, так как при повышении частоты эффективность трансформатора выше, требования к размерам сердечника меньше. Такой сердечник изготовлен из ферромагнитных сплавов, а для низкой частоты используется сталь.

Напряжение в блоке питания стабилизируется путем обратной связи отрицательной величины. Осуществляется поддержка напряжения выхода на одном уровне, не зависит от нагрузки и входных колебаний. Обратная связь создается разными методами. Если в блоке есть гальваническая развязка от сети, то применяется связь одной обмотки трансформатора на выходе или с помощью оптрона. Если развязка не нужна, то используют простой резистивный делитель. За счет этого напряжение выхода стабилизируется.

Особенности лабораторных блоков

Принцип действия осуществлен на активном преобразовании напряжения. Для удаления помех ставят фильтры в конце и начале цепи. Насыщение транзисторов положительно отражается на диодах, имеется регулировка напряжения. Встроенная защита блокирует короткие замыкания. Кабели питания применены немодульной серии, мощность достигает 500 ватт.

В корпусе установлен вентилятор охлаждения, скорость вентилятора регулируется. Наибольшая нагрузка блока составляет 23 ампера, сопротивление 3 Ом, наибольшая частота 5 герц.

Применение импульсных блоков

Сфера их использования постоянно растет как в быту, так и в промышленном производстве.

Импульсные блоки питания применяются в источниках бесперебойного питания, усилителях, приемниках, телевизорах, зарядных устройствах, для низковольтных линий освещения, компьютерной, медицинской технике и других различных приборах, и устройствах широкого назначения.

Достоинства и недостатки
ИБП имеет следующие преимущества и достоинства:
  • Небольшой вес.
  • Увеличенный КПД.
  • Небольшая стоимость.
  • Интервал напряжения питания шире.
  • Встроенные защитные блокировки.

Уменьшенная масса и размеры связано с применением элементов с радиаторами охлаждения линейного режима, импульсного регулирования вместо тяжелых трансформаторов. Емкость конденсаторов уменьшена за счет увеличения частоты. Схема выпрямления стала проще, самая простая схема – однополупериодная.

У трансформаторов низкой частоты теряется много энергии, рассеивается тепло во время преобразований. В ИБП максимальные потери возникают при переходных процессах коммутации. В другое время транзисторы устойчивы, они закрыты или открыты. Созданы условия для сохранения энергии, КПД достигает 98%.

Стоимость ИБП снижена из-за унификации элементов широкого ассортимента на роботизированных предприятиях. Силовые элементы из управляемых ключей состоят из полупроводников меньшей мощности.

Технологии импульсов дают возможность применять сеть питания с разной частотой, что расширяет применение блоков питания в различных сетях энергии. Модули на полупроводниках с небольшими габаритами с цифровой технологией имеют защиты от короткого замыкания и других аварий.

Недостатки

Импульсные блоки питания функционируют с помощью преобразования импульсов высокой частоты, создают помехи, уходящие в окружающую среду. Возникает необходимость подавления и борьбы с помехами разными методами. Иногда подавление помех не дает эффекта, и применение импульсных блоков становится невозможным для некоторых типов устройств.

Импульсные блоки питания не рекомендуется подключать как с низкой нагрузкой, так и с высокой. Если на выходе резко упадет ток ниже установленного предела, то запуск может оказаться невозможным, а питание будет с искажениями данных, которые не подходят к диапазону работ.

Похожие темы:

Импульсный блок питания: схемы, принцип работы, особенности

Мы имеем множество различных устройств, подключая которые к сети мы даже не задумываемся о том, какое питание им необходимо. Значительная часть бытовой техники имеет импульсный блок питания. Даже светодиодные или люминесцентные цокольные лампы имеют встроенный источник импульсного питания (ИИП).

Содержание статьи

Что делает импульсный блок питания (ИБП)

В сети напряжение имеет синусоидальную форму. Для некоторых устройств это то что нужно, другим надо постоянное или импульсное напряжение. Вот этим и занимаются источники питания — преобразуют синусоидальную форму в нужную и, чаще всего, это постоянное напряжение. Независимо от формы выходного напряжения блок питания называют импульсным, потому что одна из стадий преобразования — формирование импульсов, которые затем выпрямляются.

Примеры импульсных блоков питания:

  • Зарядное устройство для телефона или смартфона;
  • Внешний блок питания ноутбука;
  • Блок питания компьютера;
  • Блок питания для светодиодной ленты.

Импульсный блок питания Robiton EN5000S. Предназначен для питания от источника переменного тока 100-240В приборов с напряжением 6,0 / 7,5 / 9,0 / 12,0 / 13,5 / 15 / 16В и максимальным входным током 5000 мА

Есть импульсные источники питания выдающие постоянное напряжение одного номинала. Наиболее распространенные на — 5 В, 12 В или  24 В. Есть устройства, выдающие сразу несколько уровней. Такие, например, стоят в компьютерах. На выходе они формируют сразу 5 В и 12 В. Есть — регулируемые ИИП, при помощи переключателей в них можно задавать выходные параметры (в определенных рамках). Импульсный блок питания может быть в виде отдельного устройства или являться частью какого-то более сложного прибора.

Путь преобразования синусоиды в постоянное напряжение при помощи источника импульсного питания

Если говорить об отдельных ИБП, то самыми распространенными, пожалуй, являются зарядные устройства для телефонов, ноутбуков. Они имеют компактные размеры, так как требуется небольшая мощность. Встроенный импульсный блок питания есть в телевизорах, компьютерах и другой сложной электронике, в некоторых бытовых приборах. Блоки питания бывают линейные (трансформаторные) или импульсные (инверторные).

Инвертор — устройство для преобразования постоянного тока в переменный с изменением величины напряжения. Обычно представляет собой генератор периодического напряжения, по форме приближённого к синусоиде, или дискретного сигнала.

Оба типа блоков питания преобразуют синусоиду в постоянный ток, но вот путь преобразования разный, да и результаты несколько отличаются. Импульсный блок питания отличается высокой стабильностью работы. Тем не менее трансформаторные источники еще в ходу. Почему? Стоит разобраться.

Чем отличается от трансформаторного блока питания

И трансформаторный (линейный) и импульсный (инверторный) БП выдают на выходе постоянное напряжение. Причем вторые имеют меньшие габариты, более стабильны в работе, часто ниже по цене, да еще и напряжение дают более «качественное» и независящее от параметров исходной синусоиды (а она далеко не идеальная в наших сетях). Так почему же используют и трансформаторные блоки, и импульсные? Чтобы понять, надо знать в чем отличие трансформаторного блока питания от импульсного. А для этого придется разбираться в устройстве и принципах работы. На основании этого можно уяснить основные свойства.

Блок-схемы трансформаторного и импульсного блоков питания

Как работает трансформаторный блок питания

В линейном блоке питания основное преобразование происходит при помощи трансформатора. Его первичная обмотка рассчитана под сетевое напряжение, вторичная обычно понижающая. В случае классического трансформатора переменного тока, предложенного П. Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.

Следующий блок — выпрямитель, на котором синусоида сглаживается, превращается в пульсирующее напряжение. Этот блок выполнен на основе выпрямительных диодов. Диод может стоять один, может быть установлен диодный мост (мостовая схема). Разница между ними — в частоте импульсов, которые получаем на выходе. Дальше стоит стабилизатор и фильтр, придающие выходному напряжению нужный уровень и форму. На выходе имеем постоянное напряжение.

Самый простой линейный блок питания с двухполупериодным выпрямителем без стабилизации

Основной недостаток линейных источников питания — большие габариты. Они зависят от размеров трансформатора — чем выше требуется мощность, тем больше размеры блока питания. Нужен еще стабилизатор, который корректирует выходное напряжение, а это еще увеличивает габариты, снижает КПД. Зато это устройство не грозит помехами работающему рядом оборудованию.

Устройство импульсного блока питания и его принцип работы

В импульсном блоке питания преобразование сложнее. На входе стоит сетевой фильтр, задача которого не допустить в сеть высокочастотные колебания, вырабатываемые этим устройством. Они могут повлиять на работу рядом расположенных приборов. Сетевой фильтр в дешевых моделях стоит не всегда, и в этом зачастую кроется проблема с нестабильной работой каких-то устройств, которые мы часто списываем на «падение напряжения в сети».

Далее стоит сглаживающий фильтр, который выпрямляет синусоиду. Полученное на его выходе пилообразное напряжение подается на инвертор, преобразуется в импульсы, имеющие положительную и отрицательную полярность. Их параметры (частота и скважность) задаются при помощи блока управления. Частота обычно выбирается высокой — от 10 кГц до 50 кГц. Именно наличие этой ступени преобразования — генерации импульсов — и дало название этому типу преобразователей.

Блок-схема ИИП с формами напряжения в ключевых точках

Высокочастотные импульсы поступают на трансформатор, который является гальванической развязкой от сети. Трансформаторы эти небольшие, так как с возрастанием частоты сердечники нужны все меньше. Причем сердечник может быть набран из ферромагнитных пластин (в линейных БП должен быть из более дорогой электромагнитной стали).

На выходном выпрямителе биполярные импульсы превращаются в положительные, а выходной фильтр на их основе формирует постоянное напряжение. Основное достоинство ИБП в том, что существует обратная связь, которая позволяет регулировать работу устройства таким образом, чтобы напряжение на выходе было близко к идеалу. Это дает возможность получать стабильные параметры на выходе, независимо от того, что имеем на входе.

Достоинства и недостатки импульсных блоков питания

Для новичков не сразу становится понятным, почему лучше использовать импульсные выпрямители, а не линейные. Дело не только в габаритах и материалоемкости. Дело в более стабильных параметрах, которые выдают импульсные устройства. Качество напряжения на выходе не зависит от качества сетевого напряжения. Для наших сетей это актуально. Но не только это. Такое свойство позволяет использовать импульсный блок питания в сети разных стран. Ведь параметры сетевого напряжения в России, Англии и в некоторых странах Европы отличаются. Не кардинально, но отличается напряжение, частота. А зарядки работают в любой из них — практично и удобно.

Размер тоже имеет значение

Кроме того импульсники имеют высокий КПД — до 98%, что не может не радовать. Потери минимальны, в то время как в трансформаторных много энергии уходит на непродуктивный нагрев. Также ИБП меньше стоят, но при этом надежны. При небольших размерах позволяют получить широкий диапазон мощностей.

Но импульсный блок питания имеет серьезные недостатки. Первый — они создают высокочастотные помехи. Это заставляет ставить на входе сетевые фильтры. И даже они не всегда справляются с задачей. Именно поэтому некоторые устройства, особо требовательные к качеству электропитания, работают только от линейных БП. Второй недостаток — импульсный блок питания имеет ограничение по минимальной нагрузке. Если подключенное устройство обладает мощностью ниже этого предела, схема просто не будет работать.

Схемы импульсных блоков питания

Чтобы понимать, как работает импульсный блок питания, надо разобраться в том, что происходит в каждой его части. Сделать это проще по схемам. Мы приведем только некоторые, так как вариантов и вариаций — море. Схема импульсного блока питания содержит пять обязательных блоков плюс обратная связь. Вот о каждом элементе и поговорим отдельно, Попутно приведем полные схемы ИБП с использованием различной элементной базы.

Вариант импульсного источника питания с выходным напряжением 5 В и 12 В и разной полярности

Входной фильтр

Как мы уже говорили, входной фильтр стоит для того, чтобы в сеть не попали высокочастотные помехи, генерируемые источником питания. В самом простейшем варианте это устройство представляет собой дроссель, который подавляет электромагнитные помехи и два конденсатора, включенных параллельно входу и нагрузке.

Схема простейшего входного фильтра

Конденсаторы используются специальные — X-типа. Икс-конденсаторы были разработаны специально для этих целей. Они выдерживают мгновенные киловольтные всплески напряжения (до 2,5 кВ), гася тем самым помехи между фазой и нейтралью (противофазные помехи). Дроссель — это ферритовый сердечник с намотанными лакированными медными проводами. В нем наводятся токи, нейтрализующие токи помех.

Приведенная выше схема входного фильтра для импульсного источника питания не устраняет помехи, которые возникают между фазой и землей (корпусом) или между нейтралью и корпусом. Для их нейтрализации в схему добавляют два конденсатора Y-типа (которые выдерживают скачки напряжения до 5 кВ). Специальная конструкция Y-конденсатора гарантирует обрыв цепи, а не короткое замыкание, в случае выхода его из строя.

Оба типа конденсаторов (X и Y), который ставят во входных фильтрах, выполняют из специальных негорючих материалов, так как они могут греться до очень высоких температур и могут стать причиной пожара. Именно в этом, да еще в конструктивных особенностях кроется причина их высокой стоимости (по сравнению с обычными).

Схема для компенсации всех типов помех

Но для корректной работы этой схемы необходимо рабочее заземление. Его надо подключить к корпусу блока питания. Без заземления, корпус блока питания будет находиться под напряжением около 110 В. Ток будет очень маленьким, но прикосновения будут ощутимы.

Сетевой выпрямитель и сглаживающий фильтр

Как уже сказано выше, выпрямитель проводит предварительное выпрямление синусоиды. Если установлен один диод, он отсекает нижние (отрицательные) полуволны.

Сравнение однополупериодного и двухполупериодного выпрямителя. При использовании одного диода низкий КПД и большая пульсация выпрямленного напряжения. По этим причинам предпочтительней мостовая схема на четырех диодах

В самом простом случае выпрямитель — диод Шоттки, но может использоваться и диодный мост с параллельно подключенным конденсатором. Для диодных мостов часто применяют обычные диоды типа 1N4007, но лучше все-таки устанавливать все те же диоды Шоттки. Они «быстрее», так что можно получить лучше результаты на выходе.

Несколько схем фильтров разной степени сложности

Один диод ставят в блоках питания к недорогой технике. На его выходе напряжение имеет вид идущих с некоторыми промежутками положительных полуволн. На выходе диодного моста пульсации намного ниже, так что такой выпрямитель ставят для более требовательных к питанию приборов. Пульсирующее напряжение с выхода диода/диодного моста подается на конденсатор (он должен быть рассчитан на напряжение 270-400 В), который из полуволн делает «зубчики». Тут уже получаем более-менее стабильное постоянное напряжение.

Инвертор или блок ключей

На следующем блоке выпрямленное напряжение преобразуется в импульсы. Частота импульсов высокая — от 10 до 50 кГц. Есть два способа реализации этих блоков: при помощи микросхем, на основе автогенератора (блокинг-генератора).

Еще одна блок-схема ИИП

Во втором случае используется пара транзисторов, которые включаются попеременно, формируя на выходе последовательность импульсов. Частота переключений задается генератором. Такие схемы встречаются и сейчас, но большинство реализуется на микросхемах.

Пример схемы инвертора на транзисторах

Если есть микросхема, зачем городить огород из нескольких десятков деталей. Тем более, что требуемый тип микросхем широко распространен и стоит немного. Это так называемые ШИМ-контроллеры ( TL494, UC384х, Dh421,  TL431, IR2151, IR2153 и др).  К этим микросхемам надо добавить всего-лишь пару полевых транзисторов и несколько мелких деталей и получим требуемый инвертор.

Схема ИИП с ШИМ контроллером для обратноходового и полумостового преобразователей

ШИМ-контроллер отлично встраивается в любой тип схем. Он совместим с обратноходовыми, полумостовыми и мостовыми схемами выпрямителей. Естественно, отличается количество элементов, но все они простые и доступные.В обратноходовых схемах транзисторы должны быть рассчитаны на более высокое напряжение, чем подается на вход.

Устройство импульсного источника напряжения с ШИМ контроллером и двухтактным и мостовым выпрямителем

По полумостовым схемам построены импульсные блоки питания в осветительных приборах, в энергосберегающих и светодиодных лампах, электронный балласт для люминисцентных ламп (ЭПРА). Мостовые схемы применяют в более мощных блоках. Например, в сварочных инверторах.

Есть и более «серьезные» контроллеры, которые параллельно с работой, проверяют параметры входного и выходного напряжения и, при неисправностях, просто блокируют свою работу. Так как в импульсном блоке питания этот компонент, обычно, самый дорогой, это очень неплохо. Заменив неисправные детали (обычно резисторы или конденсаторы), получаем рабочий агрегат.

Силовой трансформатор

Узел трансформатора на блоке питания является одним из самых стабильных. В этом блоке, кроме самого трансформатора, содержится небольшая группа элементов которая нейтрализует выброс тока, который возникает на обмотках трансформатора при смене полярностей. Эта группа называется «снаббер».

Рассматриваемый блок обведен красным, а снаббер — зеленым

Трансформатор — один из самых надежных элементов. В нем очень редко возникают проблемы. Он может повредиться при пробое инвертора. В этом случае через обмотку течет слишком высокий ток, который и выводит из строя трансформатор.

Схема блока силового трансформатора для ИИП

Работает все это следующим образом:

  • На первом такте работы импульсного источника питания открыт ключ ВТ1 (полевой транзистор с индуцированным каналом n-типа). Ток течет через первичную обмотку трансформатора, заряд накапливается в сердечнике.
  • На втором такте ключ закрывается, ток течет во вторичной обмотке через диод VD2.
  • При переключении на первичной обмотке возникает выброс, который вызван неидеальностью деталей. Тут в работу вступает снаббер. Его задача поглотить этот выброс, так как напряжение может быть достаточно большим и может повредить ключевой транзистор, что приведет к неработоспособности схемы. Ток выброса течет через первичную обмотку трансформатора, диод VD1, через сопротивление R1 и емкость C2.
  • Далее полярность снова меняется, вступает в работу ключ ВТ1.

Номиналы выбираются исходя из параметров трансформатора. Подбор сложный, так что описывать его не имеет смысла. И еще: не во всех схемах есть снаббер, но его наличие увеличивает надежность и стабильность работы импульсного источника питания.

Несколько слов о диодах, которые используют в снабберах. Это может быть обычный диод, подобранный по параметрам, но более надежны схемы со стабилитроном. Еще может быть вариант без резистора и емкости, но с включенным навстречу супрессором (на схеме ниже).

Еще один вариант блока силового трансформатора с использованием супрессора (защитного диода) D1

Супрессор — это защитный диод, принцип работы похож на стабилитрон, вот только выравнивается импульсный ток и рассеиваемая мощность. Может быть несимметричный и симметричным.

Выходной выпрямитель и фильтр, стабилизатор

На этом, можно считать со схемой импульсного блока питания разобрались, так как выходные выпрямитель и фильтр устроены по тому же принципу. Элементы могут быть другие, а схемы те же. Единственное, что еще стоит рассмотреть — стабилизация выходных параметров. Это опционная часть, но такой импульсный блок питания более надежен.

Наиболее простой и дешевый способ стабилизации используется в дешевых блоках питания — обратная связь на пассивных элементах. На схеме ниже, это два резистора R6 и R7, подключенные к вспомогательной обмотке силового трансформатора. Не слишком надежно, потому что есть влияние между обмотками, но просто и недорого.

Простой способ стабилизации

Второй вариант стабилизатора выходного напряжения сделан на стабилизаторе VD9 и оптроне HL1. Выходное напряжение складывается из падения на стабилитроне и напряжения на оптроне. Это чуть более надежная схема для ИИП средней мощности.

Стабилизация выхода ИИП при помощи стабилитрона и оптрона

Наиболее стабильные выходные показатели имеют схемы ИИП со стабилизатором  TL431.

TL431 — интегральная схема трёхвыводного регулируемого параллельного стабилизатора напряжения с улучшенной температурной стабильностью. С внешним делителем TL431 способна стабилизировать напряжения от 2,5 до 36 В при токах до 100 мА.

ИБП с использованием микросхемы TL431 более сложные, но надежные. В таких схемах может быть подстроечный переменный резистор, который позволяет изменять выходное напряжение в небольших пределах. Обычно подстройка составляет не более 20%, так как в противном случае схема может быть нестабильной.

Схема со стабильным напряжением на выходе

Если подстройка выходного напряжения не нужна, лучше подстроечный резистор заменить обычным, так как переменные менее надежны.

Пару слов о резисторе R20 (см. схему выше), который стоит на выходе. Это так называемый, нагрузочный резистор. Как известно ИИП не будет работать без нагрузки. Поэтому на выходе и ставят сопротивление, которое обеспечивает минимальную рабочую нагрузку. Но это решение неидеально, так как резистор греется и порой очень сильно. Располагать рядом конденсаторы крайне нежелательно, иначе подогреваются и они. А в качестве выходного сопротивления должны стоять высокоточные резисторы, так как они при нагреве мало меняют свои параметры (блок выдает стабильное напряжение даже при длительной работе).

Блок питания — это… Что такое Блок питания?

Блок питания

Промышленные БП Siemens SITOP Power 24 В постоянного тока в качестве вторичного источника электропитания средств автоматизации технологических процессов.

Блок питания (БП) — устройство, предназначенное для формирования напряжения, необходимого системе, из напряжения электрической сети. Чаще всего блоки питания преобразуют переменный ток сети 220 В частотой 50 Гц (для России, в других странах используют иные уровни и частоты) в заданный постоянный ток.

Трансформаторные БП

Схема простейшего трансформаторного БП c двухполупериодным выпрямителем

Классическим блоком питания является трансформаторный БП. В общем случае он состоит из понижающего трансформатора или автотрансформатора, у которого первичная обмотка рассчитана на сетевое напряжение. Затем устанавливается выпрямитель, преобразующий переменное напряжение в постоянное (пульсирующее однонаправленное). В большинстве случаев выпрямитель состоит из одного диода (однополупериодный выпрямитель) или четырёх диодов, образующих диодный мост (двухполупериодный выпрямитель). Иногда используются и другие схемы, например, в выпрямителях с удвоением напряжения. После выпрямителя устанавливается фильтр, сглаживающий колебания (пульсации). Обычно он представляет собой просто конденсатор большой ёмкости.

Также в схеме могут быть установлены фильтры высокочастотных помех, всплесков, защиты от КЗ, стабилизаторы напряжения и тока.

Габариты трансформатора

Существует формула, несложно выводимая из базовых законов электротехники (и даже уравнений Максвелла):

( 1 / n ) ~ f * S * B

где n — число витков на 1 вольт (в левой части формулы стоит ЭДС одного витка, которая есть по уравнению Максвелла производная от магнитного потока, поток есть нечто в виде sin ( f * t ), в производной f выносится за скобку), f — частота переменного напряжения, S — площадь сечения магнитопровода, B — индукция магнитного поля в нем. Формула описывает амплитуду B, а не мгновенное значение.

Величина B на практике ограничена сверху возникновением гистерезиса в сердечнике, что приводит к потерям на перемагничивание и перегреву трансформатора.

Если принять, что f есть частота сети (50 Гц), то единственные два параметра, доступные для выбора при разработке трансформатора, есть S и n.2.

Увеличение S означает повышение габаритов и веса трансформатора. Если же идти по пути снижения S, то это означает повышение n, что в трансформаторе небольшого размера означает снижение сечения провода (иначе обмотка не поместится на сердечнике).

Увеличение n и снижение сечения означает сильное увеличение активного сопротивления обмотки. В маломощных трансформаторах, где ток через обмотку невелик, этим можно пренебречь, но с повышением мощности ток через обмотку растет и, при высоком сопротивлении обмотки, рассеивает на ней значительную тепловую мощность, что недопустимо.

Перечисленные выше соображения приводят к тому, что на частоте 50 Гц трансформатор большой (от десятков ватт) мощности может быть успешно реализован только как устройство большого габарита и веса (по пути повышения S и сечения провода со снижением n).

Потому в современных БП идут по другому пути, а именно по пути повышения f, т.е. переходу на импульсные блоки питания. Таковые блоки питания в разы легче (причем основная часть веса приходится на экранирующую клетку) и значительно меньше габаритами, чем классические. Кроме того, они не требовательны к входному напряжению и частоте.

Достоинства трансформаторных БП

  • Простота конструкции
  • Надёжность
  • Доступность элементной базы
  • Отсутствие создаваемых радиопомех (в отличие от импульсных, создающих помехи за счет гармонических составляющих)

Недостатки трансформаторных БП

  • Большой вес и габариты, особенно при большой мощности
  • Металлоёмкость
  • Компромисс между снижением КПД и стабильностью выходного напряжения: для обеспечения стабильного напряжения требуется стабилизатор, вносящий дополнительные потери.

Импульсные БП

Принципиальная схема простейшего однотактного импульсного БП

Импульсные блоки питания являются инверторной системой. В импульсных блоках питания переменное входное напряжение сначала выпрямляется. Полученное постоянное напряжение преобразуется в прямоугольные импульсы повышенной частоты и определенной скважности, либо подаваемые на трансформатор (в случае импульсных БП с гальванической развязкой от питающей сети) или напрямую на выходной ФНЧ (в импульсных БП без гальванической развязки). В импульсных БП могут применяться малогабаритные трансформаторы — это объясняется тем, что с ростом частоты повышается эффективность работы трансформатора и уменьшаются требования к габаритам (сечению) сердечника, требуемым для передачи эквивалентной мощности. В большинстве случаев такой сердечник может быть выполнен из ферромагнитных материалов, в отличие от сердечников низкочастотных трансформаторов, для которых используется электротехническая сталь.

В импульсных блоках питания стабилизация напряжения обеспечивается посредством отрицательной обратной связи. Обратная связь позволяет поддерживать выходное напряжение на относительно постоянном уровне вне зависимости от колебаний входного напряжения и величины нагрузки. Обратную связь можно организовать разными способами. В случае импульсных источников с гальванической развязкой от питающей сети наиболее распространенными способами являются использование связи посредством одной из выходных обмоток трансформатора или при помощи оптрона. В зависимости от величины сигнала обратной связи (зависящему от выходного напряжения), изменяется скважность импульсов на выходе ШИМ-контроллера. Если развязка не требуется, то, как правило, используется простой резистивный делитель напряжения. Таким образом, блок питания поддерживает стабильное выходное напряжение.

Достоинства импульсных БП

Сравнимые по выходной мощности с линейными стабилизаторами соответствующие им импульсные стабилизаторы обладают следующими основными достоинствами:

  • меньшим весом за счет того, что с повышением частоты можно использовать трансформаторы меньших размеров при той же передаваемой мощности. Масса линейных стабилизаторов складывается в основном из мощных тяжелых низкочастотных силовых трансформаторов и мощных радиаторов силовых элементов, работающих в линейном режиме;
  • значительно более высоким КПД (вплоть до 90-98%) за счет того, что основные потери в импульсных стабилизаторах связаны с переходными процессами в моменты переключения ключевого элемента. Поскольку основную часть времени ключевые элементы находятся в одном из устойчивых состояний (т.е. либо включен, либо выключен) потери энергии минимальны;
  • меньшей стоимостью, благодаря массовому выпуску унифицированной элементной базы и разработке ключевых транзисторов высокой мощности. Кроме этого следует отметить значительно более низкую стоимость импульсных трансформаторов при сравнимой передаваемой мощности, и возможность использования менее мощных силовых элементов, поскольку режим их работы ключевой;
  • сравнимой с линейными стабилизаторами надежностью. (Блоки питания вычислительной техники, оргтехники, бытовой техники почти исключительно импульсные).
  • широким диапазоном питающего напряжения и частоты, недостижимым для сравнимого по цене линейного. На практике это означает возможность использования одного и того же импульсного БП для носимой цифровой электроники в разных странах мира — Россия/США/Англия, сильно отличных по напряжению и частоте в стандартных розетках.
  • наличием в большинстве современных БП встроенных цепей защиты от различных непредвиденных ситуаций, например от короткого замыкания и от отсутствия нагрузки на выходе.

Недостатки импульсных БП

  • Работа основной части схемы без гальванической развязки от сети, что, в частности, несколько затрудняет ремонт таких БП;
  • Все без исключения импульсные блоки питания являются источником высокочастотных помех, поскольку это связано с самим принципом их работы. Поэтому требуется предпринимать дополнительные меры помехоподавления, зачастую не позволяющие устранить помехи полностью. В связи с этим часто недопустимо применение импульсных БП для некоторых видов аппаратуры.
  • В распределённых системах электропитания: эффект гармоник кратных трём. При наличии эффективно действующих корректоров фактора мощности и фильтров во входных цепях этот недостаток обычно не актуален.

Смотри также

Ссылки

Литература

  • Скотт Мюллер Модернизация и ремонт ПК = Upgrading and Repairing PCs. — 17 изд. — М.: «Вильямс», 2007. — С. 1181-1256. — ISBN 0-7897-3404-4

Особенности блоков питания — что нужно знать?

Импульсный блок питания — это что?

Обычный блок питания заметно больше и тяжелее чем импульсный. Размеры отличаются из-за разной частоты преобразования энергии. Обычный блок питания преобразует энергию с частотой сети — 50 Гц , тогда как импульсный с частотой примерно 30 000 Гц. Количество порций энергии, которая преобразовывается каждую секунду, больше, поэтому размеры основного компонента — трансформатора уменьшаются.

Функционально импульсный блок питания отличается защитой от короткого замыкания и перегрузки, стабилизацией выходного напряжения. Эти функции могут присутствовать и в обычном блоке питания, но в импульсном они достаются почти даром, т.к. все их может взять на себя одна и та же микросхема, которую и без того нужно устанавливать для контроля процесса преобразования.


Преимущества импульсного блока питания
— широкий диапазон входного напряжения
— нечувствителен к качеству входного напряжения
— меньше габариты и масса

Недостатки
— импульсные помехи при работе, которые свойственны для дешевых блоков питания
— меньше надежность недорогих блоков питания, что обусловлено сложностью конструкции

 

Основные характеристики

Входное напряжение
Напряжение сети, к которой подключают блок питания. В электрошкафах наиболее популярны промышленные блоки питания с входным напряжением 220 В, 50 Гц. Импульсные блоки питания работают нормально как при повышенном, так и пониженном напряжении, поэтому входное напряжение указывают диапазоном, например 85…265 В, 50…60 Гц. Некоторые модели могут работать как от переменного, так и от постоянного напряжения.

Выходное напряжение
Напряжение на выходе блока питания. Применительно к электрошкафам распространены блоки питания с выходом 24 В постоянного тока — напряжение питания промышленной автоматики и цепей управления.

Выходной ток
Ток, при котором обеспечивается нормальная работа блока питания. Потребляемый нагрузкой ток должен быть равен или меньше выходного тока блока питания. Если же потребляемый ток нагрузки больше выходного тока блока питания, то это приведет к срабатыванию защиты или просадкам напряжения. Если выходной ток неизвестен, но известна мощность, то значения можно пересчитать.

Мощность
Отражает количество и мощность нагрузок, которые блок питания может обеспечить энергией. Суммарная мощность подключенных нагрузок должна быть меньше или равной мощности блока питания.

Для выбора необязательно знать и ток, и мощность, т.к. они взаимосвязаны. При необходимости их можно пересчитать:


где:
Pнагр — мощность нагрузки, Вт;
Uвых — выходное напряжение блока питания, в нашем случае 24 В. 

Если к блоку питания нет дополнительных требований, то знания этих характеристик достаточно.

 

Дополнительные функции

Регулятор напряжения
Подстроечный резистор на панели блока питания корректирует напряжение на выходе. У БП на 24 В пределы регулировки обычно составляют 22…28 В. Применяется для питания нагрузок с нестандартным рабочим напряжением и компенсации падения напряжения на длинных линиях.

Контакт DC OK
Нормально разомкнутый контакт срабатывает, если выходное напряжение стабилизировано, т.е. в нормальном режиме работы. Контакт используется для удаленного контроля работы БП, а также для управления нагрузкой, чувствительной к перепадам напряжения.

Кратковременная перегрузка
Иногда пишут Dynamic Boost, намеренно «забывая» перевести. Например, в ассортименте нашего магазина есть блоки питания Phoenix Contact серии КВНТ, которые допускают перегрузку 50 % в течении 5 секунд, а блоки QUINT допускают 100 % перегрузку в течениие тех же 5 секунд.

Постоянная перегрузка по мощности
Она же Static Boost. Производитель намеренно занижает номинальную мощность блока, чтобы обеспечить резерв. Например, блоки питания Phoenix Contact серии QUINT допускают постоянную перегрузку в 25%.

Функция селективного отключения
Блок питания, обладая значительным кратковременным запасом мощности, позволяет обеспечить срабатывание подключенных к нему автоматических выключателей. Таким образом, отключается только неисправная нагрузка, а остальные остаются в работе.

Например, блоки питания QUINT с одноимённой функцией «Selective Fuse Breaking» (SFB). Довольно редкая функция, но встречается не только у Phoenix Contact, например, у блоков питания PROtop производства Weidmuller с функцией «DCL».

Weidmuller эту функцию описывают так: «Технология DCL гарантирует надежное срабатывание автоматов, благодаря повышению выходного тока по крайней мере на 600 % в течении 20 мс. Кроме того, повышенная перегрузочная способность обеспечивает запуск мощного двигателя». Функция реализуется только при подключении нагрузки через автоматический выключатель или плавкий предохранитель.

На примере Phoenix Contact, мы сделали сводную таблицу характеристик чтобы понять разницу в стоимости, отражающих функционал и надёжность.

Сравнение блоков питания Phoenix Contact, мощностью 240 Вт

Серия

ESSENTIAL

UNO

КВНТ

QUINT

Артикул

2910587

2904372

1032386

2904601

Цена в магазине

8 411 ₽

9 653 ₽

12 283 ₽

14 207 ₽

Входное напряжение, АС

85… 264 В

85… 264 В

85…264 В

85…264 В

Входное напряжение, DC

99…275 В

90…350 В

Точность стабилизации выходного напряжения

±2 %

±2 %

±1 %

±1 %

КПД

88%

90%

90%

93%

Среднее время наработки на отказ

700 000 ч

641 000 ч

1 000 000 ч

783 000 ч

Регулятор напряжения

Параллельная работа

Контакт DC OK

Кратковременная перегрузка

1,5 х Iном в течении 5с

2 х Iном в течении 5с

Постоянная перегрузка по мощности

1,25 х Iном

Функция селективного отключения


 

Аксессуары

Модули резервирования —
Резервный модуль позволяет добиться бесперебойной подачи питания на нагрузку от двух независимых блоков. Контролирует распределение мощности и формирует сигнал аварии в случае отказа одного из блоков питания. В обычном режиме он равномерно распределяет нагрузку между блоками питания по 50% на каждый. В случае поломки одного из блоков питания, вся нагрузка ложится на исправный, загружая его на все 100%.

Автоматические выключатели и плавкие вставки —
Защищают блок питания от перегрузки и короткого замыкания. В случае короткого замыкания в нагрузке автоматический выключатель отключит её, а блок питания не «уйдёт в защиту» и продолжить питать исправные нагрузки.

Наиболее интересны многоканальные электронные автоматические выключатели. Они содержат в одном корпусе несколько автоматических выключателей, уставка срабатывания каждого выключателя или канала регулируется, а на входе встроена защита от повышенного и пониженного напряжения.

Например, выключатель СВМ производства Phoenix Contact подключатся к выходу блока питания, а уже к выходным клеммам автомата подключают нагрузку согласно схеме:


Схема подключения автомата CBM

В зависимости от исполнения, CBM рассчитаны на подключение 4 или 8 нагрузок. Уставки по току перегрузки регулируются в пределах 0,5…10 А отдельно для каждой нагрузки. Защитное отключение одной нагрузки не влияет на работу остальных. Кроме защиты от токов, CBM контролирует уровень напряжения. Если напряжение выходит за пределы, то автомат отключает все подключенные устройства. Кроме электронного выключателя CBM, для защиты нагрузок применяются автоматические выключатели постоянного тока или плавкие предохранители, подобранные в соответствии с номинальными токами нагрузки.

 

Что дальше?

Конечно, это не всё, но достаточно, чтобы определиться с выбором. По мере знакомства с блоками питания вы узнаете еще больше характеристик и функций: защита от кратковременных перенапряжений, фильтры помех, дополнительные релейные выходы и другое. Главное — не терять любопытство!

Блоки питания в нашем каталоге
https://shop.idelectro.ru/catalog/bloki_pitaniya_i_transformatory/

Что такое блок питания (БП)?

Блок питания (PSU) — это внутренний аппаратный компонент ИТ. Несмотря на название, блоки питания (PSU) не обеспечивают питание систем — вместо этого они преобразуют его. В частности, источники питания преобразуют переменный ток высокого напряжения ( AC ) в постоянный ток ( DC ), а также регулируют выходное напряжение постоянного тока с точными допусками, необходимыми для современных компьютерных компонентов.

Большинство источников питания являются импульсными (SMPS), что имеет как преимущества в эффективности, так и упрощает проектирование для нескольких входов напряжения. Это означает, что большинство блоков питания могут работать в разных странах, где потребляемая мощность может измениться. В Великобритании напряжение составляет 240 В, 50 Гц, в США — 120 В, 60 Гц, а в Австралии — 230 В, 50 Гц.

Когда мне нужен БП?

Блок питания — важнейшая часть любого сервера. Без него ваша ИТ-инфраструктура не работала бы.Поэтому неудивительно, что большинство систем включают в себя блок питания при покупке.

Однако есть альтернатива блоку питания, которую можно использовать в некоторых случаях. При выборе Power over Ethernet (PoE) электроэнергия может передаваться по сетевым кабелям без привязки к электрической розетке. Это идеально подходит для систем, которым требуется большая гибкость; PoE может предоставить точки беспроводного доступа везде, где это наиболее удобно, и меньше места занимает проводка.

Как выбрать подходящий блок питания для моей системы?

Во-первых, при выборе блока питания важно убедиться, что он совместим с форм-фактором корпуса вашего сервера и материнской платы.Это гарантирует, что он уместится на вашем сервере.

Во-вторых, мощность является важным фактором, который следует учитывать. Чем выше номинальная мощность, тем большую мощность устройство может обеспечить вашей системе, а это означает, что вам необходимо оценить, сколько энергии требуется вашим компонентам для эффективной работы. Например, если для компонентов вашей системы требуется 600 В, было бы идеально купить блок питания на 1200 В, так как большинство источников питания имеют наивысший КПД при ≈50% нагрузке . Это также позволяет при необходимости расширить вашу систему дополнительными компонентами.

Наконец, при замене или обновлении блока питания ПК важно принимать во внимание торговую марку. Популярные бренды источников питания включают Corsair, Antec, EVGA и Seasonic. Выбор часто сводится к личным предпочтениям, совместимости с вашей системой и тем, для чего вы используете блок питания (например, игры, малый или большой бизнес или личное использование). Один совет — обратите внимание на рейтинг 80 Plus Platinum , так как он обладает высокой энергоэффективностью и может минимизировать затраты на электроэнергию.

Просмотрите нашу полную коллекцию блоков питания здесь , чтобы начать работу.

Насколько эффективным должен быть мой блок питания? Блоки питания

80 Plus имеют шкалу эффективности от 80 Plus и 80 Plus Bronze до Titanium. « 80 Plus » означает, что блоки питания в этом диапазоне всегда будут работать с эффективностью 80% при минимальном , а по мере продвижения по шкале к 80 Plus Platinum и Titanium вы можете получить КПД до 94% (при 50 % нагрузка).

Новейшим блокам питания 80 Plus для наиболее эффективной работы требуется высокая мощность, поэтому блоки питания 80 Plus Gold, Platinum и Titanium (до 94%) идеально подходят для крупных центров обработки данных. Блоки питания 80 Plus Silver и ниже (максимальная эффективность 88%) больше подходят для ПК и настольных ПК.

Важно помнить, что разница между рейтингом эффективности 90% и рейтингом эффективности 92% будет иметь огромное значение с точки зрения потребления энергии в крупных центрах обработки данных.

Нужно ли мне более одного блока питания?

Короче говоря, серверу всегда потребуется как минимум два источника питания. Для этого существуют разные режимы работы, в зависимости от того, сколько избыточности вам нужно в вашей системе. Один из вариантов — иметь полностью резервную систему электропитания, что означает, что один блок питания всегда отключается, и в случае простоя возникает аварийный откат. Другой вариант — использовать общие источники питания, когда оба работают одновременно и распределяют рабочую нагрузку.В Techbuyer мы рекомендуем вам предоставить в два раза больше мощности , чем вам действительно нужно, чтобы обеспечить оптимальное время безотказной работы.

Для максимального резервирования также неплохо иметь источник бесперебойного питания (ИБП) , который позволит вашему компьютеру работать в течение ограниченного времени в случае отключения питания. Есть три типа: онлайн , офлайн и линейно-интерактивный . Источники бесперебойного питания в режиме онлайн обеспечивают постоянное качество электроэнергии, в то время как автономные ИБП начинают работать при пропадании питания, и при переходе на новый уровень произойдет небольшая задержка.Line-Interactive — это комбинация этих двух элементов, обеспечивающая большую защиту по питанию за счет кондиционирования линии.

Блок питания

Блок питания (PSU) компьютера преобразует внутреннее сетевое напряжение питания переменного тока (переменного тока) переменного тока (220-240 вольт в Европе) в различные регулируемые низковольтные выходы постоянного тока (постоянного тока) (постоянного тока), необходимые для компонентов, которые составляют компьютерную систему.

Блок питания обычно представляет собой металлическую коробку шириной 150 мм, высотой 86 мм и глубиной (обычно) 140 мм. Он устанавливается внутри корпуса системы с помощью четырех винтов в стандартном месте, так что доступ к переключателю включения / выключения и гнезду кабеля питания, установленным на задней части блока питания, осуществляется через отверстие в задней части корпуса. Это же отверстие также позволяет воздуху поступать в охлаждающий вентилятор блока питания.

В некоторых случаях может быть переключатель напряжения, позволяющий пользователю выбирать напряжение в соответствии с их географическим положением (например, в США есть внутренний источник питания, работающий при номинальном напряжении 120 вольт).Внутри корпуса из передней части БП выходит пучок кабелей. Кабели часто группируются и имеют цветовую маркировку в зависимости от типа устройства, к которому они будут подключены.

Хотя в прошлом блоки питания использовались в нескольких форм-факторах, некоторые из них были довольно тяжелыми и громоздкими, в большинстве настольных персональных компьютеров теперь используются блоки питания, соответствующие стандарту ATX формата , последняя версия которого — 2 .3.1, выпущенной в 2008 году. На рисунке ниже показан типичный блок питания ATX.


Типичный блок питания ATX


Блоки питания ATX разработаны специально для работы с материнскими платами семейства ATX и помещаются в корпус системы ATX и могут быть включены или выключены (или переведены в режим ожидания) с использованием сигналов, генерируемых материнской платой. Максимальная номинальная выходная мощность блока питания может варьироваться от 250 Вт до 2 киловатт, в зависимости от типа системы, для которой они предназначены.

Компьютерные системы с малым форм-фактором обычно имеют низкие требования к источнику питания, порядка 300 Вт или меньше. Системы, используемые для игр, имеют гораздо более высокие требования к мощности (обычно от 450 до 800 Вт), в основном потому, что они используют высокопроизводительные графические адаптеры, которые потребляют большое количество энергии. Наибольшее энергопотребление наблюдается у коммерческих сетевых серверов или высокопроизводительных персональных компьютеров с несколькими процессорами, несколькими дисковыми накопителями и несколькими видеокартами.

Количество энергии, необходимое для конкретной компьютерной системы, будет зависеть от требований к питанию материнской платы, процессора и оперативной памяти, а также от количества дополнительных карт и периферийных устройств, потребляющих питание от блока питания. На самом деле немногим персональным компьютерам в настоящее время требуется мощность более 350 Вт.

Даже в этом случае следует проявлять осторожность при выборе блока питания, поскольку номинальная максимальная выходная мощность, заявленная некоторыми производителями, не всегда отражает фактическую выходную мощность, которая может быть достигнута при различных условиях нагрузки.В результате производители и поставщики систем ПК и системных компонентов (особенно высокопроизводительных видеокарт) имеют тенденцию к завышению требований к минимальным требованиям к питанию, когда дело доходит до рекомендации номинальных значений блоков питания для блоков питания, которые будут использоваться с их продуктами.

Хотя верно то, что неадекватный источник питания может выйти из строя в случае перегрузки, не рекомендуется использовать источник питания с высокой выходной мощностью независимо от фактических требований к мощности.Напротив, вы должны выбрать блок питания с выходной мощностью, которая отражает требования к мощности системы. Энергоэффективность достигает максимума, когда нагрузка на источник питания составляет от 50% до 75% максимальной выходной мощности. Это означает, что блок питания рассеивает меньше энергии в виде тепла.

Если скорость вентилятора блока питания регулируется материнской платой, как это часто бывает, система будет работать более тихо, поскольку для охлаждения блока питания требуется меньший поток воздуха.При низких нагрузках (менее 20% емкости) энергоэффективность значительно падает, и больше мощности будет рассеиваться в виде тепла, чем было бы в случае с блоком питания с более подходящим номиналом. Хуже того, если нагрузка упадет ниже 15% мощности, блок питания может не работать должным образом, и есть большая вероятность, что он отключится совсем.

Информация, содержащаяся на этикетке или табличке, прикрепленной к источнику питания, содержит техническую информацию об источнике питания, которая будет включать в себя напряжение, токи и частоты источника питания переменного тока, с которыми может использоваться устройство, максимальную общую выходную мощность в ваттах и доступны различные выходы постоянного тока и напряжения.На нем также будут отображаться предупреждения об опасности и необходимая информация о сертификации безопасности (в Европе это знак CE). Типичная этикетка блока питания показана ниже.


Пример информации, представленной на БП


Поставляемые разъемы могут отличаться от одной модели к другой, но те, которые обычно входят в комплект, перечислены в таблице ниже.

Стандартные выходные напряжения

Положительные выходные напряжения, создаваемые блоком питания, равны +3.3В, + 5В и + 12В. Также предусмотрены отрицательные напряжения -5В и -12В, а также резервное напряжение + 5В . Разные напряжения (иногда называемые шинами , ) используются для питания различных компонентов, и краткое изложение того, какие напряжения и (и токи) используются для каких целей, приведено ниже.

Для тех, кто не знаком с концепцией отрицательного напряжения в цепях постоянного тока, это просто означает, что разность потенциалов измеряется от земли до сигнала, а не наоборот (земля обычно используется в качестве точки отсчета для измерения напряжения).Текущие требования к различным компонентам системы очень важны, потому что мощность — это произведение напряжения и тока. Таким образом, общая потребляемая мощность системы зависит от требований к напряжению и току ее отдельных компонентов.

Сводка напряжений БП
Напряжение Назначение
-12V Используется в некоторых старых типах схем усилителя последовательного порта.
Обычно не используется в новых системах.
Ток обычно ограничен до 1А.
-5V Используется на некоторых ранних персональных компьютерах для контроллеров гибких дисков
и некоторых дополнительных карт ISA.
Обычно не используется в новых системах.
Ток обычно ограничен до 1А.
0V Заземление нулевого напряжения (также называемое общим или землей ) и опорная точка
для других напряжений системы.
+3.3V Используется для питания процессора, некоторых типов памяти
, некоторых видеокарт AGP и других цифровых схем
(для большинства этих компонентов требовалось питание +5 В в старых системах
).
+ 5V Все еще используется для питания материнской платы и некоторых компонентов
на материнской плате. Обратите внимание, что
также присутствует резервное напряжение 5 В, когда система
отключена, что может быть заземлено (например, пользователем
, нажав выключатель питания на передней панели корпуса), чтобы
восстановило питание системы.
+ 12V В основном используется для таких устройств, как дисководы и охлаждающие вентиляторы
, которые имеют двигатели того или иного типа. Эти устройства
имеют собственные разъемы питания, которые подключаются непосредственно к блоку питания
.

Как работает блок питания

Тип блока питания, встречающийся в современном ПК, называется импульсным блоком питания (SMPSU).По сути, это означает, что сетевое напряжение переменного тока, поступающее в блок питания, выпрямляется для получения постоянного напряжения без использования сетевого трансформатора (обычно они довольно тяжелые из-за необходимости в катушке с ферритовым сердечником). Полученное таким образом напряжение затем включается и выключается на очень высоких скоростях с помощью электронной схемы переключения, эффективно создавая высокочастотное прямоугольное напряжение (фактически, серию импульсов постоянного тока). Затем можно использовать легкий и относительно недорогой высокочастотный трансформатор для получения требуемого выходного напряжения постоянного тока.

Выходное напряжение и ток постоянного тока регулируются , (поддерживаются постоянными) с помощью контроллера обратной связи, который увеличивает или уменьшает выходную мощность в соответствии с изменениями тока нагрузки. Он делает это путем увеличения или уменьшения рабочего цикла (по сути, это означает увеличение или уменьшение количества импульсов напряжения, производимых схемой переключения в заданный период времени).

Обратите внимание, что большинство блоков питания могут отключиться, если ток нагрузки превышает определенный порог, что снижает вероятность повреждения компьютерной системы (или ее пользователя) в случае электрического сбоя, такого как короткое замыкание.Тот же принцип применяется к отсутствию тока нагрузки (или очень низкому току нагрузки), поскольку блок питания не может правильно работать ниже определенного уровня выходной мощности и отключится при обнаружении недостаточного тока нагрузки.

При первом включении может потребоваться полсекунды или около того, чтобы блок питания стабилизировался и начал генерировать правильное напряжение постоянного тока, необходимое для компьютера. Поэтому источник питания отправляет на материнскую плату сигнал, называемый сигналом Power Good , после того, как он выполнил свои внутренние тесты и убедился, что все выходы питания в порядке.Материнская плата должна дождаться этого сигнала перед включением системы.

Скачок напряжения или кратковременный сбой питания иногда вызывают кратковременное прерывание сигнала Power Good, что приводит к перезагрузке системы при ее возобновлении. Также обратите внимание, что по практическим причинам разные напряжения, создаваемые блоком питания, фактически производятся несколькими разными импульсными блоками питания, которые связаны вместе в блоке питания, каждый из которых изменяет свою выходную мощность в соответствии с требованиями к питанию компонентов.

Одной из последних тенденций в разработке блоков питания стала концепция модульного блока питания , в котором кабели могут быть подключены к блоку питания через разъемы на конце блока питания , что позволяет пользователю устанавливать только те кабели, которые им действительно необходимы. Идея состоит в том, что отсутствие ненужных кабелей уменьшит беспорядок внутри корпуса и улучшит воздушный поток. Он также обеспечивает больший выбор типа кабеля питания, который может установить пользователь (например,г. Serial ATA или Molex для жестких дисков).

Критики этой разработки указали, что электрическое сопротивление будет увеличиваться из-за большего количества электрических соединений. Сторонники отмечают, что увеличение сопротивления очень невелико. Однако на практике проблемы могут возникнуть только в том случае, если разъемы старые и изношенные (в этом случае соединение может быть неплотным) или соединение было выполнено неправильно во время установки.Очевидный ответ — заменить старые кабели и проверить все соединения перед первым использованием. Основные разъемы блоков питания и их выводы показаны на схеме ниже.


Общие разъемы блоков питания и их контактные выходы


Сбой источника питания неизбежно потребует замены блока питания, поскольку компьютер, очевидно, не будет работать без него.Такие сбои часто возникают из-за перегрева из-за поломки охлаждающего вентилятора. Впоследствии система отключается и не может быть перезагружена, или, как иногда случается, многократно перезагружается через явно случайные промежутки времени.

В критически важных компьютерных системах, таких как сетевые серверы, нередко можно найти резервные источники питания, действующие в качестве резервных для основного источника питания. В случае выхода из строя основного источника питания резервный блок вступает в действие, и его можно заменить в течение планового периода технического обслуживания.

С другой стороны, портативным компьютерам, таким как ноутбуки и нетбуки, требуется гораздо меньше энергии (200 Вт или меньше), что позволяет им питаться от съемной аккумуляторной батареи, которую можно легко заменить при необходимости. Внешний источник питания используется для зарядки аккумулятора и может подавать питание на систему, когда она подключена. Этот внешний блок питания обычно подает постоянный ток 19,5 В.

Возможность включения и выключения источника питания компьютера путем заземления резервного напряжения +5 В означает, что система может включаться или выключаться с помощью сигнала, генерируемого материнской платой в ответ на программное прерывание (или системный вызов — сигнал, генерируемый операционной системой) или аппаратное прерывание (сигнал, генерируемый аппаратным компонентом в системе).

Возможность управления питанием с помощью системного вызова означает, что пользователь может выключить систему, щелкнув значок или пункт меню, вместо того, чтобы физически выключать систему с помощью выключателя питания. Это также означает, что программное обеспечение управления питанием может быть настроено на отключение питания компьютера при отсутствии действий пользователя в течение заданного периода времени. Система может быть настроена на повторное включение в случае некоторого заранее определенного события, такого как нажатие пользователем клавиши на клавиатуре или активация сетевого соединения.


Что такое блок питания?

Обновлено: 07.10.2019, Computer Hope

Сокращенно PS или P / S , блок питания или PSU (блок питания ) — это аппаратный компонент компьютера, который питает все остальные компоненты. Блок питания преобразует 110–115 или 220–230 вольт переменного тока (переменного тока) в устойчивый низковольтный постоянный ток (постоянный ток), который может использоваться компьютером и рассчитанный по количеству генерируемых ватт.На изображении показан блок питания Antec True 330 мощностью 330 Вт.

Осторожность

Никогда не открывайте корпус блока питания. Он содержит конденсаторы, способные удерживать сильный электрический заряд, даже если компьютер выключен и отключен от сети на длительное время.

Подсказка

Вы можете защитить свой блок питания и компьютер от скачков и падений напряжения, купив ИБП (источник бесперебойного питания). Если вы не можете позволить себе ИБП, убедитесь, что компьютер хотя бы подключен к сетевому фильтру.

Где в компьютере находится блок питания?

Блок питания расположен на задней панели компьютера, обычно вверху. Однако во многих более поздних корпусах для компьютеров в корпусе Tower источник питания расположен в задней части корпуса. В корпусе настольного компьютера (моноблока) блок питания расположен сзади слева или сзади справа.

Детали на задней панели блока питания

Ниже приведен список деталей, которые вы можете найти на задней панели блока питания.

  • Разъем кабеля питания к компьютеру.
  • Вентилятор, выходящий из блока питания.
  • Красный переключатель для изменения напряжения питания.
  • Кулисный переключатель для включения и выключения источника питания.

На передней панели блока питания, которая не видна, если компьютер не открыт, вы найдете несколько кабелей. Эти кабели подключаются к материнской плате компьютера и другим внутренним компонентам. Блок питания подключается к материнской плате с помощью разъема в стиле ATX и может иметь один или несколько из следующих кабелей для подключения питания к другим устройствам.

Детали, обнаруженные внутри блока питания

Ниже приведен список деталей внутри блока питания.

  • Выпрямитель, преобразующий переменный ток в постоянный.
  • Фильтр, который сглаживает постоянный ток, исходящий от выпрямителя.
  • Трансформатор, который регулирует входящее напряжение, повышая или понижая его.
  • Регулятор напряжения, который управляет выходным напряжением постоянного тока, позволяя подавать нужное количество энергии, вольт или ватт, на компьютерное оборудование.

Порядок работы этих внутренних компонентов источника питания следующий.

  1. Трансформатор
  2. Выпрямитель
  3. Фильтр
  4. Регулятор напряжения

Какие элементы питаются от БП компьютера?

Все, что находится в корпусе компьютера, питается от источника питания. Например, материнская плата, ОЗУ, ЦП, жесткий диск, дисководы и большинство видеокарт (если они есть в компьютере) потребляют энергию от источника питания.Любые другие внешние устройства и периферийные устройства, такие как компьютерный монитор и принтер, имеют источник питания или потребляют питание по кабелю для передачи данных, как некоторые устройства USB.

Вентилятор всегда работает от источника питания?

Пока компьютер включен, вентилятор (ы) в блоке питания всегда должен работать. Если вентилятор не работает (вращается), либо компьютер не работает, либо вентилятор неисправен, и блок питания следует заменить.

Примечание

Некоторые блоки питания имеют регулируемые элементы управления, которые могут увеличивать или уменьшать скорость вентилятора в зависимости от его температуры.Однако он всегда должен крутиться.

Адаптер переменного тока, Аббревиатуры компьютеров, Термины по оборудованию, Питание, Шнур питания, Выключатель питания, Термины по питанию, Резервный источник питания, SMPS

Что такое БП? Что такое блок питания ATX?

Блок питания — это аппаратное обеспечение, которое преобразует мощность, подаваемую из розетки, в полезную для многих частей внутри корпуса компьютера.

Он преобразует переменный ток из розетки в постоянную форму мощности, называемую постоянным током, которая требуется компонентам компьютера.Он также регулирует перегрев, контролируя напряжение, которое может изменяться автоматически или вручную в зависимости от источника питания.

Блок питания является важной частью, потому что без него остальное внутреннее оборудование не может работать. Материнские платы, корпуса и блоки питания бывают разных размеров, называемых форм-факторами. Все три должны быть совместимы, чтобы правильно работать вместе.

CoolMax, CORSAIR и Ultra — самые популярные производители блоков питания, но большинство из них входят в комплект поставки компьютера, поэтому при замене блока питания вы имеете дело только с производителями.

Блок питания обычно не обслуживается пользователем. Для вашей безопасности никогда не открывайте блок питания.

Описание блока питания

Блок питания Corsair Enthusiast TX650 V2 ATX12V EPS12V. © Corsair

Блок питания установлен прямо внутри задней части корпуса. Если вы проследите за кабелем питания компьютера, вы обнаружите, что он присоединяется к задней части блока питания. Это задняя сторона, как правило, единственная часть блока питания, которую когда-либо увидит большинство людей.

В задней части блока питания также есть отверстие для вентилятора, через которое воздух выходит из задней части корпуса компьютера.

Сторона блока питания, обращенная за пределы корпуса, имеет трехконтактный штекерный порт, к которому подключается кабель питания, подключенный к источнику питания. Также часто есть переключатель питания и переключатель напряжения источника питания.

С противоположной стороны блока питания в компьютер выходят большие пучки цветных проводов. Разъемы на противоположных концах проводов подключаются к различным компонентам внутри компьютера для подачи на них питания.Некоторые специально предназначены для подключения к материнской плате, в то время как другие имеют разъемы, которые подходят для вентиляторов, дисководов гибких дисков, жестких дисков, оптических приводов и даже некоторых мощных видеокарт.

Блоки питания имеют номинальную мощность, чтобы показать, какую мощность они могут обеспечить компьютеру. Поскольку для правильной работы каждой части компьютера требуется определенное количество энергии, важно иметь блок питания, который может обеспечить нужное количество. Очень удобный калькулятор Cooler Master Supply Calculator может помочь вам определить, сколько вам нужно.

ATX против блоков питания ATX12V

ATX и ATX12V — это спецификации конфигурации, которые важно различать при работе с источниками питания. Для большинства людей заметные различия просто связаны с физическим разъемом на материнской плате. Выбор одного из них зависит от типа используемой материнской платы.

Новейший стандарт ATX12V v2.4 используется с 2013 года. Материнские платы, использующие ATX12V 2.x, используют 24-контактный разъем.Материнские платы ATX используют 20-контактный разъем.

Одна из ситуаций, когда в игру вступает количество выводов, — это когда вы решаете, работает ли конкретный блок питания с вашей системой. Блоки питания, совместимые с ATX12V, хотя и имеют 24 контакта, на самом деле могут использоваться на материнской плате ATX с 20-контактным разъемом. Оставшиеся неиспользуемые четыре контакта просто отсоединятся от разъема. Если в корпусе вашего компьютера есть место, это вполне выполнимая установка.

Однако это не работает наоборот.Если у вас есть блок питания ATX с 20-контактным разъемом, он не будет работать с более новой материнской платой, требующей подключения всех 24 контактов. Дополнительные четыре контакта были добавлены в эту спецификацию для подачи дополнительного питания через шины 12 В, поэтому 20-контактный блок питания не может обеспечить достаточную мощность для работы такой материнской платы.

Еще кое-что, что отличает блоки питания ATX12V и ATX, — это разъемы питания, которые они предоставляют. Стандарт ATX12V (начиная с версии 2.0) требует 15-контактного разъема питания SATA.Если вам нужно использовать устройство SATA, но блок питания не имеет разъема питания SATA, вам понадобится адаптер Molex с 4 контактами на 15 контактов SATA (например, этот).

Еще одно различие между ATX и ATX12V — это рейтинг энергоэффективности, который определяет, сколько мощности снимается со стены по сравнению с выходной мощностью компьютера. Некоторые старые блоки питания ATX имеют рейтинг эффективности ниже 70 процентов, в то время как стандарт ATX12V требует минимального рейтинга 80 процентов.

Другие виды блоков питания

Описанные выше блоки питания — это те, которые находятся внутри настольного компьютера.Другой тип — внешний источник питания.

Например, на некоторых игровых консолях блок питания подключен к кабелю питания, который должен проходить между консолью и стеной. Вот пример блока питания Xbox One, который выполняет ту же функцию, что и блок питания для настольного компьютера, но является внешним и, следовательно, полностью подвижным, и его гораздо проще заменить, чем блок питания для настольного компьютера:

Блок питания Xbox One.

Другие похожи, например, блок питания, встроенный в некоторые внешние жесткие диски, которые необходимы, если устройство не может потреблять достаточно энергии от компьютера через USB.

Внешние источники питания выгодны, потому что они позволяют устройству быть меньше и привлекательнее. Однако некоторые из этих типов блоков питания присоединяются к кабелю питания и, поскольку они обычно довольно большие, иногда затрудняют размещение устройства у стены.

Источник бесперебойного питания (ИБП) — еще один тип источника питания. Они похожи на резервные источники питания, которые обеспечивают питание, когда основной блок питания отключен от обычного источника питания.Поскольку блоки питания часто становятся жертвами скачков напряжения и скачков напряжения из-за того, что устройство получает электроэнергию, вы можете подключить устройство к ИБП (или сетевому фильтру).

Спасибо, что сообщили нам!

Расскажите, почему!

Другой Недостаточно подробностей Сложно понять

Что такое компьютерный блок питания БП

Блок питания
Блок питания ( PSU ) преобразует электрическую сеть переменного тока ( переменного тока, ) в низкое напряжение D.C. ( постоянного тока ) для питания материнской платы и компонентов вашего компьютера.

В большинстве современных настольных компьютеров используется стандартный блок питания ATX, который состоит из квадратной металлической коробки с различными проводами и разъемами питания. На задней панели находится переключатель включения / выключения, сетевая розетка, а иногда и переключатель напряжения (230 В или 115 В), который необходимо установить в соответствии с вашим регионом.

PSU — Блок питания ATX



Блок питания — один из наиболее вероятных компонентов компьютера, который выйдет из строя, хотя его довольно легко заменить.Следует подчеркнуть, что вы никогда не должны открывать блок питания и пытаться его починить, поскольку он содержит конденсаторы, которые удерживают заряд даже при отключенном питании, что может привести к серьезным травмам. Вам следует просто заменить вышедший из строя БП на новый. Желательно покупать качественный бренд с достаточной мощностью для любых будущих обновлений, так как дешевый блок питания с низким энергопотреблением может выйти из строя, а также может разрушить материнскую плату или другие компоненты. Вам также нужно будет купить один со всеми правильными разъемами для питания всех дисков, материнской платы и, возможно, видеокарты. Разъемы блока питания рассматриваются далее в этой статье.

Вам следует покупать блок питания от известного производителя, на который есть гарантия и поддержка. Также неплохо провести исследование, просмотрев онлайн-обзоры блоков питания. Бренды хорошего качества включают Corsair, Seasonic и Antec. Также следует обратить внимание на вес, поскольку более тяжелый блок питания обычно означает более крупные и лучшие компоненты и более крупные радиаторы для отвода тепла. Блок питания обычно включает вентилятор, и более крупный вентилятор будет предпочтительнее, поскольку он будет тише, чем вентилятор меньшего размера.Также обратите внимание на рейтинг эффективности блока питания и найдите сертификат 80+, который означает, что он эффективен более 80% и теряет менее 20% на нагрев.

Базовый настольный компьютер может иметь блок питания мощностью 300 Вт или 350 Вт, а мощный игровой компьютер может иметь мощность от 500 Вт до 750 Вт или более. Даже если вы можете заменить блок питания на блок с большей мощностью, компьютер не будет потреблять больше энергии, чем раньше, но он сможет поддерживать дальнейшие обновления, такие как увеличение количества дисков или более мощную видеокарту и т. Д.Чтобы дать вам представление о мощности блока питания, необходимой для вашего компьютера, вы можете найти калькулятор источника питания по адресу www.thermaltake.outervision.com/ или www.vbutils.com/power.php .

Блок питания обеспечивает три линии первичного напряжения + 3,3 В, + 5 В и + 12 В. Источник питания 3,3 В и 5 В предназначен для различных цифровых схем, а источник питания 12 В обычно используется для двигателей, установленных на жестких дисках или DVD-приводах, а также для охлаждающих вентиляторов. Современные компьютеры теперь также используют источник питания 12 В для многих других компонентов, включая центральный процессор и современную графическую карту, потребляющую много энергии.

Помимо выбора блока питания с достаточной общей мощностью, вы также должны понимать, что общая мощность делится между всеми шинами напряжения, и для современного компьютера мощность шины (-ей) +12 В является наиболее важной. На блоке питания должна быть этикетка с указанием силы тока каждой из шин напряжения, а также общей мощности блока питания. Вы можете рассчитать мощность шины по формуле — Ватты = Амперы x Вольт, что даст вам 300 Вт для шины +12 В при 25 А (300 = 25 x 12).Некоторые блоки питания также имеют несколько шин +12 В ( multi-rail ), а не одну единственную шину +12 В. Нет значительных преимуществ между выбором блока питания с несколькими рельсами или с одним рельсом, и оба типа должны работать одинаково хорошо.

PSU — Табличка, отображающая выходную мощность



Блок питания должен отображать этикетку с подробным описанием выходной мощности каждой шины, а также общей выходной мощности.Этикетка блока питания на фотографии выше находится на Corsair CX750M, который имеет одну шину +12 В на 62 А, которая может выдерживать мощность 744 Вт (744 = 62 x 12). Вместе с другими шинами напряжения общая мощность составляет 750 Вт.

Наличие такого количества проводов и разъемов, ведущих от блока питания, означает, что вам нужно будет собрать все неиспользуемые кабели и связать их кабельными стяжками. Также держите все провода в чистоте и порядке, чтобы они не мешали работе других компонентов, таких как вентиляторы процессора и корпуса, и не ограничивали воздушный поток в компьютере.Вы можете купить модульный блок питания, который позволяет подключать только те кабели питания, которые требуются к самому блоку питания.

Как выбрать блок питания для ПК: что нужно знать

Форм-фактор

и настройки кабелей

Как и в случае с большинством аппаратного обеспечения ПК, существует множество вариантов того, как выглядит ваш блок питания.

При выборе форм-фактора блока питания необходимо учитывать его физический размер.Для подавляющего большинства пользователей настольных ПК подойдут стандартные блоки питания ATX, хотя вы все равно захотите убедиться, что ваш блок питания поместится в вашем случае, проверив соответствующие зазоры.

Если вы энтузиаст ПК с малым форм-фактором (SFF), вам нужно провести дополнительное исследование, чтобы убедиться, что ваш блок питания подойдет. Существует большое количество блоков питания малого форм-фактора, таких как SFX, CFX и другие, поэтому убедитесь, что вы найдете блок питания, который подходит для вашего корпуса, независимо от размера вашего ПК.

Еще одно важное различие, касающееся физических характеристик вашего блока питания, заключается в том, является он модульным или немодульным.

Источник питания работает путем преобразования энергии из настенной розетки и направления ее к каждому из отдельных компонентов вашей системы через различные кабели. Если ваш блок питания не является модульным, эти кабели уже будут припаяны к печатной плате, а это значит, что вам не нужно выбирать кабели, которые будут входить в вашу сборку. Все кабели, даже те, которые вы не используете, нужно будет хранить в вашем чемодане.

В этом нет ничего плохого с функциональной точки зрения, хотя плохая прокладка кабелей может привести к снижению эффективности воздушного потока, поэтому вы должны быть уверены, что лишние кабели не мешают.

С другой стороны, модульные блоки питания

не поставляются с подключенными кабелями. Это меняет процесс установки, так как вам нужно будет подключить каждый кабель к блоку питания и компоненту, который он питает, но это также означает, что вы можете оптимизировать использование меньшего количества кабелей. Это приводит к более чистой конструкции и потенциально лучшему воздушному потоку. Большинство людей не собираются использовать все разъемы, предоставляемые обычным блоком питания, что также делает модульные блоки более практичными.

Существует также третий промежуточный вариант, творчески названный полумодульным источником питания.Это именно то, на что они похожи: некоторые из наиболее часто используемых кабелей подключены к блоку питания, а некоторые придется подключать самостоятельно.

Для модульных и полумодульных систем питания имейте в виду, что вы не хотите смешивать и сочетать кабели от других производителей или даже разные модели от одного производителя, если не указано иное. Хотя концы кабелей, которые подключаются к компонентам в вашей сборке, стандартизированы, конец, который подключается к блоку питания, не является таким, что означает, что разные бренды могут иметь разные соединения.Вот почему вы должны использовать только те кабели, которые идут в комплекте с блоком питания.

Что делает блок питания и почему его не следует упускать из виду — PC Rookies

Блоки питания (БП), вероятно, являются одними из самых недооцененных компонентов компьютеров. Но вы не должны упускать из виду это вообще, потому что на самом деле это очень важно для других ваших компонентов.
Блок питания
обеспечивает питание всех компонентов вашего компьютера, что делает его ключевым компонентом для вашего компьютера даже при включении.Блок питания подключается к электрической розетке в стене, а затем преобразует ток в напряжения, используемые различными компонентами. Блок питания имеет разные кабели, которые выводят разное напряжение. Дешевый блок питания может в конечном итоге поджарить все остальные компоненты вашего компьютера.

Источники питания бывают разных ценовых категорий, потому что они имеют разную выходную мощность, свойства управления кабелями, уровни эффективности, размеры, а некоторые из них даже поставляются с разными разъемами.В этом посте я расскажу обо всех основах, которые вам нужно знать при выборе блока питания. Если вы собираете свой первый компьютер, я предлагаю вам прочитать обзоры всех других компонентов с этого сайта. Это гарантирует, что у вас будет достаточно знаний, чтобы понять все функции различных компонентов. Я надеюсь, что смогу поделиться некоторыми ценными знаниями, которые я получил, работая с компьютерами.

Мощность

Во-первых, вам понадобится блок питания, мощность которого достаточна для вашего компьютера.Мощность, которую предлагает блок питания, обычно очень четко обозначена на самом продукте, на упаковке и в рекламе блока питания. Это потому, что это одна из самых важных вещей, которую нужно знать о блоке питания, который вы собираетесь покупать. Это означает, что вам нужно знать, сколько энергии нужно другим вашим компонентам.

Самый простой способ сделать это — использовать онлайн-калькулятор, например, калькулятор блока питания Cooler Master. В Интернете есть много других калькуляторов мощности блока питания, но, в конце концов, все они в основном одинаковы.Эти калькуляторы дадут вам представление о мощности нагрузки вашего компьютера и рекомендуемой мощности блока питания, а также часто дают вам даже рекомендации по блоку питания в зависимости от того, что вы указали в качестве компонентов.

Результаты калькулятора мощности блока питания

Рекомендуется выбирать блок питания с большей мощностью, чем фактическая потребность, по нескольким причинам. Если произойдет скачок мощности, ваш компьютер просто не выключится из-за нехватки энергии.Кроме того, если вы собираетесь разогнаться, ваше энергопотребление будет выше, а будущие обновления будут дешевле, поскольку вам не нужно покупать новый блок питания каждый раз, когда вы меняете старый компонент на новый.

Однако большинство новых компонентов потребляют меньше энергии, чем старые, но мы склонны покупать компоненты с более высокой производительностью для модернизации наших компьютеров. Более высокая производительность означает более высокое энергопотребление. В общем, неплохо было бы оставить место для изменений и возможных скачков мощности, особенно если вы планируете разгон.

Входное напряжение

Некоторые блоки питания, в основном старые, могут иметь переключатель на задней панели. Переключатель имеет два положения: 115 В или 230 В. Это связано с тем, что выходная мощность отличается в разных странах. Например, в США розетка выдает 115 В, а в странах ЕС — 230 В. Если вы не знаете, какая мощность в вашей стране, вы можете проверить ее на этом веб-сайте или спросить у соседа.

Это означает, что если вы живете в США (или где-либо еще, где выход около 115 В), вам нужно переключить блок питания на 115 В, а если вы живете в ЕС (или где-либо еще, где выход около 230 В), у вас есть переключить его на 230 В.

Теперь важная часть: если у источника питания нет переключателя на задней панели, это не означает, что он может автоматически использовать любое напряжение. Вы должны действительно убедиться, что конкретный блок питания способен использовать выходной сигнал, который у вас есть. Вы можете проверить это в руководстве или другой документации к блоку питания. Это может быть около 115 В или 230 В и может использоваться только напряжение, близкое к этому.

Однако большинство новых блоков питания могут использовать любые напряжения от ~ 90 В до ~ 260 В. Перед покупкой нового блока питания проверьте, что говорят рекламодатели о допустимом напряжении.В противном случае вы можете сжечь свой компьютер или даже дом.

Кабели

Блоки питания поставляются с несколькими разными кабелями. Поначалу разные кабели могут показаться очень сложными, особенно если вы раньше не собирали компьютер. Не волнуйтесь, это может сначала сбить с толку, на самом деле они очень просты и понятны.

В этом посте мы не будем вдаваться в подробности мощности или чего-то подобного, я расскажу только о том, какой кабель в какой слот входит и почему.После того, как вы это узнаете, вы можете копнуть глубже и узнать больше о кабелях.

Полностью модульные разъемы для разъемов блока питания

Основной разъем ПК или разъем ATX

Основной кабель представляет собой 24-контактный кабель питания для материнской платы. Этот кабель просто подает питание на материнскую плату, это самый большой кабель, и он подключается к самому большому разъему на материнской плате. Его легко найти, он находится сбоку на материнской плате. Большинство материнских плат имеют 24-контактный разъем, но некоторые могут иметь 20-контактный разъем.Таким образом, кабель питания материнской платы, поставляемый с блоком питания, обычно представляет собой кабель с разъемом 20 + 4 контакта, поэтому он подходит как для 24-контактных, так и для 20-контактных разъемов.

Разъем P4 или EPS

Следующий кабель обеспечивает процессор необходимой мощностью, поскольку материнская плата больше не может обеспечивать ЦП достаточным питанием, это делается с помощью внешнего кабеля прямо от блока питания. Однако этот кабель подключен к материнской плате рядом с разъемом ЦП. Обычно на материнской плате можно увидеть метку типа «CPU», указывающую на то, что это слот для кабеля питания процессора.

В материнских платах высокого класса, допускающих разгон, кабель обычно 8-контактный, так что он способен обеспечивать достаточную мощность. Обычные, более дешевые материнские платы обычно имеют только 4-контактный разъем. Блоки питания могут иметь как 8-контактные, так и 4-контактные кабели или, чаще, только 8-контактный кабель, который при необходимости можно разделить.

Разъемы PCI-e

Кабели PCI-e обеспечивают питание устройств, подключенных к слотам расширения PCI-e материнских плат. Это связано с тем, что интерфейс PCI-e не может обеспечить достаточную мощность для некоторых устройств, в основном видеокарт.Эти кабели подключаются прямо к устройству, а не к материнской плате, как говорили раньше. Количество контактов, необходимых в кабеле PCI-e, зависит от используемого устройства. Высококачественным видеокартам требуется больше энергии, просто больше мощности можно получить с большим количеством контактов.

Используемые кабели PCI-e — это 6-контактные, 6 + 2-контактные и 8-контактные кабели. Для видеокарт низкого уровня нужен только 6-контактный разъем, а некоторым высокопроизводительным видеокартам для энтузиастов может потребоваться два 8-контактных разъема, чтобы обеспечить достаточную мощность. Чаще всего для среднего класса и видеокарт требуется 8-контактный кабель питания.Обычно это делается с помощью кабеля 6 + 2 контакта. На всякий случай убедитесь, что вашей видеокарте нужно, прежде чем подключать какие-либо кабели.

Разъем питания SATA

Разъемы питания SATA обеспечивают питание накопителей, SSD и HDD. Новые жесткие диски теперь используют кабели SATA, что значительно упрощает прокладку кабелей питания, поскольку вам, вероятно, нужно использовать только кабели питания SATA. Кабель питания SATA имеет L-образную форму и может быть подключен только одним способом, поэтому вам не нужно беспокоиться о его неправильном подключении.Он похож на кабель для передачи данных SATA, только L-образная головка кабеля для передачи данных короче. Кабель питания SATA подключается прямо к устройству хранения.

Molex

Molex — это кабель старого типа, сейчас он в значительной степени устарел, и вам, вероятно, не нужно о нем знать, поскольку кабели SATA заменили их. В блоках питания обычно есть место для них, поскольку некоторые люди все еще могут использовать Molex.

Переходные кабели

Что касается блоков питания, существует ряд различных переходников.Некоторые из них могут помочь вам, если вам нужно подключить, например, новый жесткий диск, который использует кабель питания SATA, к немодульному старому блоку питания, который использует кабель питания Molex для накопителей. Просто погуглите нужный адаптер, и вы, вероятно, найдете его.

Модульность

Блоки питания могут быть модульными, полумодульными и немодульными. Это просто означает, что у блоков питания есть кабели, которые можно отсоединять или нет. Полностью модульные блоки питания обычно называют модульными блоками питания.Преимущество полностью модульного блока питания заключается в том, что все кабели можно отсоединить. Если вам не нужны все они, на вашем компьютере будет меньше кабелей, и со всеми ними будет проще работать.

Полумодульный означает, что некоторые кабели, обычно периферийные, являются съемными. Это дает в основном те же преимущества, что и полностью модульный блок питания. Полумодульные блоки питания найти сложнее, но они обычно дешевле, чем полностью модульные. В немодульных источниках питания все кабели подключены, и вы не можете отсоединить ни один из них, не сломав блок питания.

Полумодульный блок питания

Немодульные блоки питания очень просты в использовании, так как вам не нужно беспокоиться о подключении каких-либо кабелей к блоку питания самостоятельно. Однако немодульные блоки питания выглядят не так красиво, особенно если у вас есть сторона из закаленного стекла на корпусе компьютера, на которой виден блок питания и некоторые кабели.

С полностью или полумодульными блоками питания вы можете удалить лишние кабели и заменить некоторые или все из них на некоторые нестандартные цвета. Об этом следует подумать, если вы хотите иметь какую-то определенную цветовую тему или индивидуальный стиль на вашем ПК.

Эффективность

Эффективность энергопотребления может показаться не такой уж важной, когда дело доходит до сборки компьютера, но если вы сами оплачиваете счета за электричество, это очень быстро превращается из скучного в интересный. Если вы не оплачиваете счета самостоятельно, рекомендуется по возможности экономить электроэнергию. На самом деле существует Инициатива Climate Savers Computing, цель которой — сократить выбросы парниковых газов и сэкономить энергию.

Уровни сертификации 80 Plus

Эффективность блоков питания рекламируется как программа сертификации 80 Plus, это добровольная программа, поэтому не все блоки питания могут иметь какие-либо сертификационные этикетки, но многие из них имеют.Программа способствует эффективному использованию энергии и имеет разные уровни сертификации.

Источники питания тестируются при различных рабочих нагрузках, а затем регистрируется эффективность. Разные уровни сертификации означают разные уровни энергоэффективности. См. Таблицу ниже для получения дополнительных сведений о различных сертификатах и ​​уровнях эффективности при различных рабочих нагрузках.

Чтобы полностью разобраться в диаграмме, вам нужно сначала знать несколько вещей. В основном, чем выше процент на графике, тем лучше результат.Если у вас есть розетки на 115 В и у вас есть блок питания с сертификатом 80 Plus Gold, это означает, что при рабочей нагрузке 20% он сможет использовать не менее 87% подаваемой на него мощности и расходовать не более 13% в качестве тепла. При нагрузке 50% он может использовать не менее 90% мощности, а при нагрузке 100% — не менее 87%.

В зависимости от напряжения на розетке в вашей стране вы можете проверить результаты диаграммы для различных уровней сертификации 80 Plus при сравнении источников питания. Самая распространенная сертификация 80 Plus — это Gold, и она обеспечивает хорошие уровни эффективности как при 115 В, так и при 230 В.

Были случаи, когда продукт не был фактически сертифицирован, но рекламировался как сертифицированный продукт, а некоторые из продуктов даже не соответствовали требованиям для сертификации. Если вы хотите убедиться, что блок питания, который вы собираетесь купить, действительно сертифицирован и, следовательно, также соответствует требованиям, вы можете это сделать. Просто зайдите на веб-сайт программ 80 Plus и убедитесь, что там указан источник питания с правильным уровнем сертификации. По сути, это единственный способ убедиться, что блок питания так же эффективен, как и в рекламе.

Размер

Блоки питания бывают разных размеров, как и корпуса компьютеров. Понятно, что блок питания должен поместиться внутри корпуса компьютера. Форм-факторы и размеры блоков питания указаны в таблице ниже. Имена обычно отображаются без обозначения 12В на конце.

Самыми распространенными типоразмерами бытовых блоков питания являются ATX и ATX Large. У них одинаковая высота и длина, поэтому они подходят для большинства корпусов, но лучше не рисковать и проверить, какая глубина зарезервирована для блока питания в корпусе вашего компьютера, вы можете найти эту информацию в руководстве по корпусу. .

Другие размеры блоков питания не так распространены среди потребителей, и вам не о чем беспокоиться. Просто убедитесь, что вы покупаете блок питания ATX или ATX Large, а глубина корпуса достаточна для этого, и все готово.

Расположение

Обычный способ установки блока питания в слот, которому он принадлежит, — это установка его вентилятором вверх. Таким образом, вентилятор будет выдувать более теплый воздух изнутри корпуса за пределы корпуса, что хорошо. Это помогает другим вашим компонентам поддерживать более низкие температуры, и вам не нужно вкладывать деньги в дополнительные вентиляторы, чтобы воздух проходил через компьютер.

Есть один сценарий, в котором вы можете разместить блок питания так, чтобы вентилятор был обращен к нижней части корпуса. Это не проблема, ведь в днище ящиков часто бывает много дырок. Таким образом, вентилятор блока питания сможет забирать воздух снаружи корпуса и также его выдувать. Зачем вам это нужно, потому что опция включения вентилятора одновременно охлаждает ваш корпус.

Что ж, если вы используете водяное охлаждение, возможно, вы захотите, чтобы вентилятор блока питания был обращен к полу. Это просто потому, что если в вашем водяном контуре произойдет утечка, она может попасть в блок питания и поджарить все ваши компоненты.Если вентилятор направлен вниз, вода вообще не может попасть в блок питания, а в худшем случае вы потеряете только один или два компонента.

Безопасность

Часто существует список сокращений методов безопасности, используемых в источниках питания, но без объяснения того, что они на самом деле означают и от чего нас защищают. Я открою здесь смысл и быстро объясню, для чего они нужны. Я пройду через SCP, OPP, OCP, OVP и UVP.

  • SCP (защита от короткого замыкания)
    В случае короткого замыкания эта функция предотвращает повреждение основных компонентов блока питания и его компонентов системы.
  • OPP (защита от перегрузки)
    Если система слишком велика и требует от блока питания большей мощности, чем она может выполнить, эта функция защиты активируется.
  • OCP (защита от перегрузки по току)
    Если нагрузка на одну линию выше указанной, блок питания автоматически отключается.
  • OVP (Защита от перенапряжения)
    Если напряжение превышает определенное значение допуска на отдельных линиях, блок питания автоматически отключается.
  • UVP (защита от пониженного напряжения)
    Если напряжение падает ниже определенного значения допуска на отдельных линиях, блок питания автоматически отключается.

Теперь, когда они объяснены, кажется разумной идеей инвестировать в какой-либо блок питания, который действительно может спасти все другие компоненты, когда что-то пойдет не так с питанием.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *