Блок питания как отремонтировать: Блок питания ПК – схема, ремонт своими руками

Автор: | 16.05.1970

Содержание

Блок питания ПК – схема, ремонт своими руками

Блок питания в компьютере (БП) – это самостоятельное импульсное электронное устройство, предназначенное для преобразования напряжения переменного тока в ряд постоянных напряжений (+3,3 / +5 / +12 и -12) для питания материнской платы, видеокарты, винчестера и других блоков компьютера.

Прежде, чем приступать к ремонту блока питания компьютера необходимо убедиться в его неисправности, так как невозможность запуска компьютера может быть обусловлена другими причинами.

Фотография внешнего вида классического блока питания АТХ стационарного компьютера (десктопа).

Где находится БП в системном блоке и как его разобрать

Чтобы получить доступ к БП компьютера необходимо сначала снять с системного блока левую боковую стенку, открутив два винта на задней стенке со стороны расположения разъемов.

Для извлечения блока питания из корпуса системного блока необходимо открутить четыре винта, помеченных на фото. Для проведения внешнего осмотра БП достаточно отсоединить от блоков компьютера только те провода, которые мешают для установки БП на край корпуса системного блока.

Расположив блок питания на углу системного блока, нужно открутить четыре винта, находящиеся сверху, на фото розового цвета. Часто один или два винта спрятаны под наклейкой, и чтобы найти винт, ее нужно отклеить или проткнуть жалом отвертки. По бокам тоже бывают наклейки, мешающие снять крышку, их нужно прорезать по линии сопряжения деталей корпуса БП.

После того, как крышка с БП снята обязательно удаляется пылесосом вся пыль. Она является одной из главных причин отказа радиодеталей, так как, покрывая их толстым слоем, снижает теплоотдачу от деталей, они перегреваются и, работая в тяжелых условиях, быстрее выходят из строя.

Для надежной работы компьютера удалять пыль из системного блока и БП, а также проверять работу кулеров необходимо не реже одного раза в год.

Структурная схема БП компьютера АТХ

Блок питания компьютера является довольно сложным электронным устройством и для его ремонта требуются глубокие знания по радиотехнике и наличие дорогостоящих приборов, но, тем не менее, 80% отказов можно устранить самостоятельно, владея навыками пайки, работы с отверткой и зная структурную схему источника питания.

Практически все БП компьютеров изготовлены по ниже приведенной структурной схеме. Электронные компоненты на схеме я привел только те, которые чаще всего выходят из строя, и доступны для самостоятельной замены непрофессионалам. При ремонте блока питания АТХ обязательно понадобится цветовая маркировка выходящих из него проводов.

Питающее напряжение с помощью сетевого шнура подается через разъемное соединение на плату блока питания. Первым элементом защиты является предохранитель Пр1 обычно стоит на 5 А. Но в зависимости от мощности источника может быть и другого номинала. Конденсаторы С1-С4 и дроссель L1 образуют фильтр, который служит для подавления синфазных и дифференциальных помех, которые возникают в результате работы самого блока питания и могут приходить из сети.

Сетевые фильтры, собранные по такой схеме, устанавливают в обязательном порядке во всех изделиях, в которых блок питания выполнен без силового трансформатора, в телевизорах, видеомагнитофонах, принтерах, сканерах и др. Максимальная эффективность работы фильтра возможна только при подключении к сети с заземляющим проводом. К сожалению, в дешевых китайских источниках питания компьютеров элементы фильтра зачастую отсутствуют.

Вот тому пример, конденсаторы не установлены, а вместо дросселя запаяны перемычки. Если Вы будете ремонтировать блок питания и обнаружите отсутствие элементов фильтра, то желательно их установить.

Вот фотография качественного БП компьютера, как видно, на плате установлены фильтрующие конденсаторы и помехоподавляющий дроссель.

Для защиты схемы БП от скачков питающего напряжения в дорогих моделях устанавливаются варисторы (Z1-Z3), на фото с правой стороны синего цвета. Принцип работы их простой. При нормальном напряжении в сети, сопротивление варистора очень большое и не влияет на работу схемы. В случае повышении напряжения в сети выше допустимого уровня, сопротивление варистора резко уменьшается, что ведет к перегоранию предохранителя, а не к выходу из строя дорогостоящей электроники.

Чтобы отремонтировать отказавший блок по причине перенапряжения, достаточно будет просто заменить варистор и предохранитель. Если варистора под руками нет, то можно обойтись только заменой предохранителя, компьютер будет работать нормально. Но при первой возможности, чтобы не рисковать, нужно в плату установить варистор.

В некоторых моделях блоков питания предусмотрена возможность переключения для работы при напряжении питающей сети 115 В, в этом случае контакты переключателя SW1 должны быть замкнуты.

Для плавного заряда электролитических конденсаторов С5-С6, включенных сразу после выпрямительного моста VD1-VD4, иногда устанавливают термистор RT с отрицательным ТКС. В холодном состоянии сопротивление термистора составляет единицы Ом, при прохождении через него тока, термистор разогревается, и сопротивление его уменьшается в 20-50 раз.

Для возможности включения компьютера дистанционно, в блоке питания имеется самостоятельный, дополнительный маломощный источник питания, который всегда включен, даже если компьютер выключен, но электрическая вилка не вынута из розетки. Он формирует напряжение +5 B_SB и построен по схеме трансформаторного автоколебательного блокинг-генератора на одном транзисторе, запитанного от выпрямленного напряжения диодами VD1-VD4. Это один из самых ненадежных узлов блока питания и ремонтировать его сложно.

Необходимые для работы материнской платы и других устройств системного блока напряжения при выходе из блока выработки напряжений фильтруются от помех дросселями и электролитическими конденсаторами и затем посредством проводов с разъемами подаются к источникам потребления. Кулер, который охлаждает сам блок питания, запитывается, в старых моделях БП от напряжения минус 12 В, в современных от напряжения +12 В.

Ремонт БП компьютера АТХ

Внимание! Во избежание вывода компьютера из строя расстыковка и подключение разъемов блока питания и других узлов внутри системного блока необходимо выполнять только после полного отключения компьютера от питающей сети (вынуть вилку из розетки или выключить выключатель в «Пилоте»).

Первое, что необходимо сделать, это проверить наличие напряжения в розетке и исправность удлинителя типа «Пилот» по свечению клавиши его выключателя. Далее нужно проверить, что шнур питания компьютера надежно вставлен в «Пилот» и системный блок и включен выключатель (при его наличии) на задней стенке системного блока.

Как найти неисправность БП нажимая кнопку «Пуск»

Если питание на компьютер подается, то на следующем шаге нужно глядя на кулер блока питания (виден за решеткой на задней стенке системного блока) нажать кнопку «Пуск» компьютера. Если лопасти кулера, хоть немного сдвинуться, значит, исправны фильтр, предохранитель, диодный мост и конденсаторы левой части структурной схемы, а также самостоятельный маломощный источник питания +5 B_SB.

В некоторых моделях БП кулер находится на плоской стороне и чтобы его увидеть, нужно снять левую боковую стенку системного блока.

Поворот на маленький угол и остановка крыльчатки кулера при нажатии на кнопку «Пуск» свидетельствует о том, что на мгновенье на выходе БП появляются выходные напряжения, после чего срабатывает защита, останавливающая работу БП. Защита настроена таким образом, что если величина тока по одному из выходных напряжений превысит заданный порог, то отключаются все напряжения.

Причиной перегрузки обычно является короткое замыкание в низковольтных цепях самого БП или в одном из блоков компьютера. Короткое замыкание обычно появляется при пробое в полупроводниковых приборах или изоляции в конденсаторах.

Для определения узла, в котором возникло короткое замыкание нужно отсоединить все разъемы БП от блоков компьютера, оставив только подключенные к материнской плате. После чего подключить компьютер к питающей сети и нажать кнопку «Пуск». Если кулер в БП завращался, значит, неисправен один из отключенных узлов. Для определения неисправного узла нужно их последовательно подключать к блоку питания.

Если БП, подключенный только к материнской плате не заработал, следует продолжить поиск неисправности и определить, какое из этих устройств неисправно.

Проверка БП компьютера


измерением величины сопротивления выходных цепей

При ремонте БП некоторые виды его неисправности можно определить путем измерения омметром величины сопротивления между общим проводом GND черного цвета и остальными контактами выходных разъемов.

Перед началом измерений БП должен быть отключен от питающей сети, и все его разъемы отсоединены от узлов системного блока. Мультиметр или тестер нужно включить в режим измерения сопротивления и выбрать предел 200 Ом. Общий провод прибора подключить к контакту разъема, к которому подходит черный провод. Концом второго щупа по очереди прикасаются к контактам, в соответствии с таблицей.

В таблице приведены обобщенные данные, полученные в результате измерения величины сопротивления выходных цепей 20 исправных БП компьютеров разных мощностей, производителей и годов выпуска.

Для возможности подключения БП для проверки без нагрузки внутри блока на некоторых выходах устанавливают нагрузочные резисторы, номинал которых зависит от мощности блока питания и решения производителя. Поэтому измеренное сопротивление может колебаться в большом диапазоне, но не должно быть ниже допустимого.

Если нагрузочный резистор в цепи не установлен, то показания омметра будут изменяться от малой величины до бесконечности. Это связано с зарядкой фильтрующего электролитического конденсатора от омметра и свидетельствует о том, что конденсатор исправный. Если поменять местами щупы, то будет наблюдаться аналогичная картина. Если сопротивление велико и не изменяется, то возможно в обрыве находится конденсатор.

Сопротивление меньше допустимого свидетельствует о наличии короткого замыкания, которое может быть вызвано пробоем изоляции в электролитическом конденсаторе или выпрямляющего диода. Для определения неисправной детали придется вскрыть блок питания и отпаять от схемы один конец фильтрующего дросселя этой цепи. Далее проверить сопротивление до и после дросселя. Если после него, то замыкание в конденсаторе, проводах, между дорожками печатной платы, а если до него, то пробит выпрямительный диод.

Поиск неисправности БП внешним осмотром

Первоначально следует внимательно осмотреть все детали, обратив особое внимание на целостность геометрии электролитических конденсаторов. Как правило, из-за тяжелого температурного режима электролитические конденсаторы, выходят из строя чаще всего. Около 50% отказов блоков питания связано именно с неисправностью конденсаторов. Зачастую вздутие конденсаторов является следствием плохой работы кулера. Смазка подшипников кулера вырабатывается и обороты падают. Эффективность охлаждения деталей блока питания снижается, и они перегреваются. Поэтому при первых признаках неисправности кулера блока питания, обычно появляется дополнительный акустический шум, нужно почистить от пыли и смазать кулер.

Если корпус конденсатора вздулся или видны следы вытекшего электролита, то отказ конденсатора очевиден и его следует заменить исправным. Вздувается конденсатор в случае пробоя изоляции. Но бывает, внешних признаков отказа нет, а уровень пульсаций выходного напряжения большей. В таких случаях конденсатор неисправен по причине отсутствия контакта между его выводом и обкладки внутри него, как говорят, конденсатор в обрыве. Проверить конденсатор на обрыв можно с помощью любого тестера в режиме измерения сопротивления. Технология проверки конденсаторов представлена в статье сайта «Измерение сопротивления».

Далее осматриваются остальные элементы, предохранитель, резисторы и полупроводниковые приборы. В предохранителе внутри вдоль по центру должна проходить тонкая металлическая проволочка, иногда с утолщением в середине. Если проволочки не видно, то, скорее всего она перегорела. Для точной проверки предохранителя нужно его прозвонить омметром. Если предохранитель перегорел, то его нужно заменить новым или отремонтировать. Прежде, чем производить замену, для проверки блока питания можно перегоревший предохранитель не выпаивать из платы, а припаять к его выводам жилку медного провода диаметром 0,18 мм. Если при включении блока питания в сеть проводок не перегорит, то тогда уже есть смысл заменять предохранитель исправным.

Как проверить исправность БП замыканием контактов PG и GND

Если материнскую плату можно проверить только подключив к заведомо исправному БП, то блок питания можно проверить отдельно с помощью блока нагрузок или запустить с помощью соединения контактов +5 В PG и GND между собой.

От блока питания на материнскую плату питающие напряжения подаются с помощью 20 или 24 контактного разъема и 4 или 6 контактного. Для надежности разъемы имеют защелки. Для того, чтобы вынуть разъемы из материнской платы нужно пальцем нажать наверх защелки одновременно, прилагая довольно большое усилие, покачивая из стороны в сторону, вытащить ответную часть.

Далее нужно закоротить между собой, отрезком провода, можно и металлической канцелярской скрепкой, два вывода в разъеме, снятой с материнской платы. Провода расположены со стороны защелки. На фотографиях место установки перемычки обозначено желтым цветом.

Если разъем имеет 20 контактов, то соединять между собой нужно вывод 14 (провод зеленого цвета, в некоторых блоках питания может быть серый, POWER ON) и вывод 15 (провод черного цвета, GND).

Если разъем имеет 24 контакта, то соединять между собой нужно вывод 16 (зеленого зеленого, в некоторых блоках питания провод может быть серого цвета, POWER ON) и вывод 17 (черный провод GND).

Если крыльчатка в кулере блока питания завращается, то блок питания АТХ можно считать работоспособным, и, следовательно, причина неработящего компьютера находится в других блоках. Но такая проверка не гарантирует стабильную работу компьютера в целом, так как отклонения выходных напряжений могут быть больше допустимых.

Проверка БП компьютера


измерением напряжений и уровня пульсаций

После ремонта БП или в случае нестабильной работы компьютера для полной уверенности в исправности блока питания, необходимо его подключить к блоку нагрузок и измерять уровень выходных напряжений и размах пульсаций. Отклонение величин напряжений и размаха пульсаций на выходе блока питания не должны превышать значений, приведенных в таблице.

Можно обойтись и без блока нагрузок измеряв напряжение и уровень пульсаций непосредственно на выводах разъемов БП в работающем компьютере.

При измерении напряжений мультиметром «минусовой» конец щупа подсоединяется к черному проводу (общему), а «плюсовой» к нужным контактам разъема.

Напряжение +5 В SB (Stand-by), фиолетовый провод – вырабатывает встроенный в БП самостоятельный маломощный источник питания выполненный на одном полевом транзисторе и трансформаторе. Это напряжение обеспечивает работу компьютера в дежурном режиме и служит только для запуска БП. Когда компьютер работает, то наличие или отсутствие напряжения +5 В SB роли не играет. Благодаря +5 В SB компьютер можно запустить нажатием кнопки «Пуск» на системном блоке или дистанционно, например, с Блока бесперебойного питания в случае продолжительного отсутствия питающего напряжения 220 В.

Напряжение +5 В PG (Power Good) – появляется на сером проводе БП через 0,1-0,5 секунд в случае его исправности после самотестирования и служит разрешающим сигналом для работы материнской платы.

Напряжение минус 12 В (провод синего цвета) необходимо только для питания интерфейса RS-232, который в современных компьютерах отсутствует. Поэтому в блоках питания последних моделей этого напряжения может не быть.

Как заменить предохранитель в БП компьютера

Обычно в компьютерных блоках питания устанавливается трубчатый стеклянный плавкий предохранитель, рассчитанный на ток защиты 6,3 А. Для надежности и компактности предохранитель впаивают непосредственно в печатную плату. Для этого применяются специальные предохранители, имеющие выводы для запайки. Предохранитель обычно устанавливают в горизонтальном положении рядом с сетевым фильтром и его легко обнаружить по внешнему виду.

Но иногда встречаются блоки питания, в которых предохранитель установлен в вертикальном положении и на него надета термоусаживаемая трубка, как на фотографии выше. В результате обнаружить его затруднительно. Но помогает надпись, нанесенная на печатной плате рядом с предохранителем: F1 – так обозначается предохранитель на электрических схемах. Рядом с предохранителем может быть также указан ток, на который он рассчитан, на представленной плате указан ток 6,3 А.

При ремонте блока питания и проверке вертикально установленного предохранителя с помощью мультиметра был обнаружен его обрыв. После выпаивания предохранителя и снятия термоусаживаемой трубки стало очевидно, что он перегорел. Стеклянная трубка изнутри вся была покрыта черным налетом от перегоревшей проволоки.

Предохранители с проволочными выводами встречается редко, но их можно с успехом заменить обычными 6,3 амперными, припаяв к чашечкам с торцов одножильные кусочки медного провода диаметром 0,5-0,7 мм.

Останется только запаять подготовленный предохранитель в печатную плату блока питания и проверить его на работоспособность.

Если при включении блока питания предохранитель сгорел повторно, то значит, имеет место отказ других радиоэлементов, обычно пробой переходов в ключевых транзисторах. Ремонтировать блок питания с такой неисправностью требует высокой квалификации и экономически не целесообразен. Замена предохранителя, рассчитанного на больший ток защиты, чем 6,3 А не приведет к положительному результату. Предохранитель все равно перегорит.

Поиск в БП неисправных электролитических конденсаторов

Очень часто отказ блока питания, и как результат нестабильная работа компьютера в целом, происходит по причине вздутия корпусов электролитических конденсаторов. Для защиты от взрыва, на торце электролитических конденсаторов делаются надсечки. При возрастании давления внутри конденсатора происходит вздутие или разрыв корпуса в месте надсечки и по этому признаку легко найти отказавший конденсатор. Основной причиной выхода из строя конденсаторов является их перегрев из-за неисправности кулера или превышения допустимого напряжения.

На фотографии видно, что у конденсатора, находящегося с левой стороны, торец плоский, а у правого – вздутый, со следами подтекшего электролита. Такой конденсатор вышел из строя и подлежит замене. В блоке питания обычно выходят из строя электролитические конденсаторы по шине питания +5 В, так как устанавливаются с малым запасом по напряжению, всего на 6,3 В. Встречал случаи, когда все конденсаторы в блоке питания по цепи +5 В были вздутые.

При замене конденсаторов по цепи питания 5 В рекомендую устанавливаю конденсаторы, которые рассчитаны на напряжение не мене, чем на 10 В. Чем на большее напряжение рассчитан конденсатор, тем лучше, главное, чтобы по габаритам вписался в место установки. В случае, если конденсатор с большим напряжение не вмещается из-за размеров, можно установить конденсатор меньшей емкости, но рассчитанный на большее напряжение. Все равно емкость установленных на заводе конденсаторов имеет большой запас и такая замена не ухудшит работу блока питания и компьютера в целом.

Чем емкость устанавливаемого конденсатора больше, тем лучше. Так что при замене лучше выбирать конденсатор, рассчитанный на большее напряжение и емкость, чем у вышедшего из строя. Заменить вышедший из строя конденсатор в блоке питания не сложно, при наличии навыков работы с паяльником. Технике пайки посвящена статья сайта «Как паять паяльником».

Нет смысла заменять электролитические конденсаторы в блоке питания, если они все вспучились. Это значит, что вышла из строя схема стабилизации выходного напряжения, и на конденсаторы было подано напряжение, превышающее допустимое. Такой блок питания можно отремонтировать, только имея профессиональное образование и измерительные приборы, но экономически такой ремонт не целесообразен.

Главное при ремонте БП не забывать, что электролитические конденсаторы имеют полярность. Со стороны отрицательного вывода на корпусе конденсатора имеется маркировка, в виде широкой светлой вертикальной полосы, как показано на фото выше. На печатной плате отверстие для отрицательного вывода конденсатора расположено в зоне маркировки белого (черного) полукруга или отверстие для положительного вывода обозначается знаком «+».

Проверка дросселя групповой стабилизации БП АТХ

Если из системного блока компьютера вдруг запахло гарью, то одной из причин может быть перегрев дросселя групповой стабилизации в БП или подгоревшая обмотка одного из кулеров. При этом компьютер обычно продолжает нормально работать. Если после вскрытия системного блока и осмотра все кулеры вращаются, то значит, неисправен дроссель. Компьютер необходимо сразу выключить и заняться ремонтом.

На фотографии показан БП компьютера со снятой крышкой, в центре которой виден дроссель, покрытый изоляцией зеленого цвета, подгоревшей сверху. Когда я подключил этот БП к нагрузке и подал на него питающее напряжение, то через пару минут из дросселя пошла тонкая струйка дыма. Проверка показала, что все выходные напряжения в допуске и размах пульсаций не превышает допустимый.

Через дроссель проходит ток всех питающих компьютер напряжений и очевидно, что произошло нарушение изоляции проводов обмоток вследствие чего, они закоротили между собой.

Обмотки можно перемотать на этот же сердечник, но в результате сильного нагрева магнитодиэлектрик сердечника может потерять добротность, в результате из-за больших токов Фуко будет нагреваться даже при целых обмотках. Поэтому рекомендую установить новый дроссель. Если аналога нет, то нужно посчитать витки обмоток, сматывая их на сгоревшем дросселе, и намотать изолированным проводом такого же сечения на новом сердечнике. При этом нужно соблюдать направление обмоток.

Проверка других элементов БП

Резисторы и простые конденсаторы не должны иметь потемнений и нагаров. Корпуса полупроводниковых приборов должны быть целыми, без сколов и трещин. При самостоятельном ремонте целесообразно выполнить замену только элементов, отображенных на структурной схеме. Если потемнела краска на резисторе, или развалился транзистор, то менять их бессмысленно, так как, скорее всего это следствие выхода из строя других элементов, которые без приборов не обнаружить. Потемневший корпус резистора не всегда свидетельствует о его неисправности. Вполне возможно просто потемнела только краска, а сопротивление резистора в норме.


Павел 02.07.2017

Здравствуйте.
У меня такой вопрос. Я заменил в блоке питания компьютера (Hiper 630Вт) электролитические конденсаторы, но не уверен, что всё правильно сделал в плане выбора конденсаторов.
Пару лет назад в нём вздулся один конденсатор и засвистел (издавал писк при включении ПК). Я заменил его на точно такой же, и по напряжению, и по ёмкости, и по градусам, а именно [10V 2200µF 105°С].
Спустя примерно 2 года заменённый мной конденсатор опять вышел из строя. ПК перестал запускаться, в Б/П появились щелчки при включении.
Разобрав Б/П я увидел, что опять вздулся замененный мной конденсатор и ещё один поменьше на [10V 1000µF 105С°] , расположенный рядом. Я их оба заменил на такие: [10V 3300µF 105°], взяв со старой ненужной донорской материнки. После процедуры замены Б/П сразу же заработал, всё пока что нормально.
В момент написания письма ПК работает на этом самом Б/П, но меня всё же беспокоит следующее:
— нормально такое увеличение ёмкости (более чем на 20%) сразу на двух конденсаторах, или посоветуете перепаять на такие же значения, как были с завода, и опять быть готовым к планируемой поломке?
— или переделать наоборот: купить конденсаторы с более высоким напряжением, а ёмкость оставить 2200 µF? Я в интернете искал по этому вопросу, и люди делятся 50/50. Кто-то говорит увеличивать ёмкость можно, а напряжение нельзя, кто-то говорит наоборот. Также советы меняются в зависимости от того, где именно перегорели конденсаторы: на материнской плате, в цепи питания процессора, либо в блоке питания ПК. Я уже не знаю кого слушать… Где правда? Заранее спасибо.
С уважением, Павел.

Александр

Здравствуйте, Павел.
При замене фильтрующих конденсаторов в любых блоках питания и материнских платах нужно руководствоваться тремя правилами:
– чем емкость больше, тем лучше будет фильтрация питающего напряжения;
– чем рабочее напряжение конденсатора выше, тем надежнее;
– чем рабочая температура конденсатора выше, тем надежнее.
Таким образом для Вашего случая лучше установить конденсатор такой же емкости, но рассчитанный на большее напряжение. Как раз конденсаторы и вспучивается из-за пробоя изоляции между его обкладками внутри. А если позволяет место, то и на большую емкость.
Дело в том, что со временем емкость электролитических конденсаторов уменьшается и как раз запас по емкости обеспечит стабильную работу на более длительный срок службы изделия в целом.
Я, например, на материнках и блоках питания при замене конденсаторов всегда устанавливаю вместо 6,3 В на 10 или 15 В, а если позволяет место, то и на большую емкость. Притом ограничений нет, можно вместо 1000 µF установить даже 4000 µF, будет только лучше.

Отремонтировать блок питания компьютера своими руками: как самостоятельно починить БП

Отремонтировать блок питания компьютера своими руками

В современных десктопах предусмотрена защита от перепадов напряжения в электрической сети. Однако нередки случаи, когда она оказывается недостаточной. Первое, что страдает при этом — блок питания.

При наличии хотя бы минимального опыта в починке электроприборов, ремонт блока питания компьютера можно пробовать выполнить своими руками.

Первые признаки неисправности

Ситуация, когда системник вообще не включается, является критической. Обычно ей предшествует ряд первичных признаков, свидетельствующих о неисправности устройства, формирующего получаемое из электросети напряжение. К ним относятся:

  • усиление шума при работе компьютера и появление посторонних звуков
  • непривычно медленное включение компьютера
  • самопроизвольное появление экрана BIOS, отключение компьютера.

При появлении хотя бы одного из указанных признаков, необходимо проверить БП

Проверка работоспособности

Предварительную проверку работоспособности устройства можно выполнить без разборки и использования каких-либо специальных тестирующих приборов. Для этого достаточно отключить все разъемы компьютера, за исключением контактов БП и центрального процессора, а затем повторить попытку включения.

Более надежный метод проверки заключается в замерах напряжения на проводах, идущих к материнской плате. Тестирование выполняется при помощи специального прибора – мультиметра (цифрового вольтметра). В приведенной ниже таблице указаны допустимые значения напряжения:

Фото 1. Таблица допустимых величин напряжения

Все измерения необходимо производить под нагрузкой (при включенном ПК).

Как исправить поломку своими силами

В ряде случаев единственным выходом при поломке БП, является его замена. Пошаговая инструкция замены устройства своими руками в этом видео:

Впрочем, прежде чем тратить деньги на покупку новой запчасти, есть смысл попытаться отремонтировать старую.

Большинство импульсных БП можно починить. Ремонт в домашних условиях выполняется по следующей схеме:

  • снятие устройства с ПК (для этого необходимо отпустить четыре крепящих винта и осторожно извлечь узел из корпуса)
  • разборка БП (снятие кожуха)
  • удаление пыли (феном или пылесосом)
  • осмотр схемы блока питания, выяснение причины неисправности и проведение мероприятий по ее устранению
  • проверка работы вентилятора системы охлаждения и проведение его профилактики.

Причины неисправности и способы их устранения

У всех блоков питания – похожая конструкция и функциональная схема. Стандартная схема импульсных БП (АТХ) выглядит следующим образом:

Фото 2. Схема АТХ

Наиболее частой причиной выхода их строя блока питания десктопа является:

  • перегоревший предохранитель
  • вздувшиеся электролитические конденсаторы
  • выход из строя диодного моста.

Вышеперечисленные проблемы можно устранить своими руками. Из инструментов потребуются отвертка и паяльник.

Следует отметить, что нередко поломка блока питания десктопа, является следствием заклинивания вентилятора системы охлаждения. Поэтому, наряду с устранением основной неисправности БП, обязательно следует выполнять профилактику кулера. Для этого вентилятор необходимо снять, разобрать, почистить и смазать.

Самостоятельный ремонт

Первое, что следует проверить в неисправном устройстве – это предохранитель на входе (смотри схему фото 2). Чаще всего его впаивают в печатную плату, но в некоторых случаях для этого предусмотрены специальные посадочные гнезда.

Предохранители могут гореть в результате короткого замыкания или из-за работы устройства под повышенной нагрузкой. Заменить сгоревший элемент можно на аналогичный либо на предохранитель с большим током срабатывания (но не более, чем на 1 ампер!). Нет смысла ставить предохранитель меньшей силы — он непременно сгорит.

Следующим в схеме блока питания идет сетевой фильтр. Он построен на импульсном высокочастотном трансформаторе, диодном мосте и конденсаторах.

Вздутые электролитические конденсаторы хорошо заметны при визуальном осмотре.

Фото 3. Вздувшиеся конденсаторы

Пришедшие в негодность конденсаторы можно заменить на аналогичные по емкости, с таким же или большим работающим напряжением. В данном случае главное, чтобы:

  • габарит позволил установить новый комплектующий на плате
  • соблюдалась полярность.

Исправность диодного моста проверяется с использованием омметра. При подключении к рабочему диоду прибор покажет сопротивление примерно 500 Ом в одном положении, а при инверсном подключении оно будет стремиться к бесконечности. В противном случае элемент нуждается в замене.

О том, как отремонтировать самому блок питания АТХ, детально рассказано в видео:

В каких случаях не стоит пытаться отремонтировать БП своими руками

Определив самостоятельно причину неисправности блока питания и устранив ее, следует скрупулезно вновь проверить уровень всех напряжений. Только после этого приступать к установке его на место.

Если показатели не соответствуют норме, значит, скорее всего, неисправность вызвана нарушениями в схеме питающего напряжения или другими причинами, установить которые в домашних условиях, без специального профессионального оборудования просто невозможно. В этом случае будет разумным обратиться за помощью к профессионалам.

Нет смысла делать самостоятельный ремонт, если вздулись все конденсаторы, или большая часть из них. Это означает, что причина неисправности — в других узлах схемы, которую сможет установить только квалифицированный мастер сервисного центра.

Не нужно пытаться отремонтировать своими руками блок питания, если в нем подгорел резистор или транзистор (это также всего лишь является свидетельством выхода из строя других элементов схемы).

Как отремонтировать блок питания компьютера своими руками, инструкция

Прежде чем ремонтировать блок питания, убедитесь, в нем ли причина плохой работы компьютера. Невозможность запустить компьютер может быть обусловлена другими факторами.

Как проверить работоспособность блока питания компьютера АТХ

Проверить работоспособность блока питания возможно без измерительных приборов. При этом, его можно не извлекать из системного блока. Чтоб это сделать, отсоединяем от материнской платы и других устройств все разъемы, идущие от него. Оставляем 1 из 4 контактных разъемов для обеспечения нагрузки. Питание на материнскую плату от блока питания поступает при помощи 20 либо 24 контактного разъема, а так же 4 либо 6 контактного. Чтоб надежно фиксировать контакты, на разъемах предусмотрены защелки. Чтоб вынуть разъем, необходимо взяться пальцами сверху защелки и надавить, плавно покачивая ее из стороны в сторону, тем самым вынув ответную часть.

Два вывода разъема, снятого с материнки, следует закоротить между собой при помощи провода или скрепки. Провода располагаются со стороны защелки. Место установки перемычки показано на фото желтым. Если в разъеме 20 контактов, закоротить необходимо 14 (зеленый, может серый, POWER ON) и 15 (черный, GND) выводы. Если разъем 24 контактный, закорачиваем 16 (зеленый, может серый, POWER ON) и 17 (черный, GND) выводы.

Если замечено вращение крыльчатки кулера, блок питания можно считать исправным. Причиной плохой работы компьютера может быть выход из строя других блоков. Однако, эта проверка не дает полной гарантии на 100% работоспособность компьютера, поскольку отклонение напряжений может быть больше нормы. Для того, чтоб исключить поломку блока питания, подключите его к блоку нагрузок, измеряйте уровень напряжений на выходе. Отклонение напряжение не должно быть больше указанных в таблице.

Выходное напряжение, В+3,3+5,0+12,0-12,0+5,0 SBGND
Цвет проводаоранжевыйкрасныйжелтыйголубойсинийчерный
Допустимое отклонение, %±5±5±5±10±50
Допустимое минимальное напряжение+3,14+4,75+11,40-10,80+4,750
Допустимое максимальное напряжение+3,46+5,25+12,60-13,20+5,250

Отрицательный конец щупа прибора подключается к общему проводу (черный), положительный – к контактам разъема. Проделывать эту операцию можно при включенном компьютере.

Структурная схема блока питания компьютера АТХ

Блок питания — сложное электронное устройство. Чтобы его отремонтировать, необходимо владеть навыками радиотехники, иметь необходимые приборы. В большинстве случаев 80% поломок блоков питания можно устранить в домашних условиях. Для этого нужно уметь паять, работать с отверткой и знать схемы источников питания. Буквально все блоки питания создаются по схеме приведенной ниже. Я отметил те компоненты, которые зачастую выходят из строя. Их можно будет заменить самостоятельно. Во время ремонта блока питания придется воспользоваться цветовой маркировкой проводов, выходящих из него.

Через сетевой шнур подаётся напряжение на разъемные соединения, а уже оттуда на плату блока питания. Главным элементом защиты является предохранитель Пр1, обычно он рассчитан на ток 5 А. В зависимости от того, какой мощности источник питания, предохранитель может быть другого номинала. Фильтр образован конденсаторами С1-С4 и дросселем L1. Он служит для подавления дифференциальных и синфазных помех, возникающих при работе блока питания и поступающих из сети. По такой схеме собранные все сетевые фильтры. Они установлены в изделиях, блоки питания которых не имеют силового трансформатора. А именно: принтерах, видеомагнитофонах, сканерах, телевизорах. Фильтр работает на полную мощность, если подключение к сети осуществляется при помощи заземляющего провода. Жаль, но большинство китайских источников питания не имеют фильтра.

Примером тому служат запаянные перемычки дросселя и отсутствие конденсаторов. Если при ремонте вы обнаружите отсутствие некоторых элементов фильтра, рекомендую их установить. Ниже на фото показать блок питания, фильтр которого установлен.

Чтобы защититься от перенапряжения, устанавливаются варисторы Z1-Z3. Обозначены на фото синим цветом. Они работают по простому принципу. Если напряжение сети нормальное, варисторы имеют большое напряжение, которое никак не влияет на работоспособность схемы. Если уровень напряжение сети превышает допустимый, сопротивление падает, приводя к сгоранию предохранителя. Это спасает основные детали компьютера от поломки. Если блок питания перестал работать от перенапряжения, замените предохранитель.

Некоторые модели блоков питания имеют возможность переключения, что позволяет работать от сети 115 В. В таком случае контакты SW1 (переключатель) должны находиться в замкнутом состоянии. Чтоб конденсаторы С5-С6, включены в сеть после моста VD1-VD4 заряжались плавно, устанавливается термистор RT, имеющий отрицательный ТКС. Когда термистор холодный, его сопротивление равно единицам Ом, в случае прохождения тока через него, он разогревается и сопротивление падает в 20-50 раз. Компьютер имеет функцию дистанционного включения. Для этого в блоке питания установлен дополнительный источник питания с малой мощностью, который постоянно включен. Даже когда компьютер выключен, но вилка не вынута из сети. Он имеет напряжение +5 B_SB и создан по схеме автоколебательного трансформаторного блокинг-генератора всего на 1 тиристоре, который запитан от напряжения диодом VD1-VD4. Это самый ненадежный узел блока питания и производить ремонтные работы сложно.

Напряжения, необходимые для работы устройств системного блока и материнские платы, фильтруются от помех при помощи конденсаторов и дросселя, а затем проводами подаются к самим источникам. Кулер, служащий для охлаждения блока питания, питается от напряжения -12 В.

Как добраться до платы блока питания

Для того, чтоб извлечь блок питания из системного блока, откручиваем 4 винта (отмечены на фото). Перед осмотром отсоединяем проводники, имеющие сильное натяжение. Остальные можно оставить.

Располагаем блок питания, таким образом, чтоб он был на углу системного блока. Выкручиваем 4 винта, помеченных на фото розовым цветом. Чаще всего пара винтов находится под наклейкой. Снимаем ее или продырявливаем. По бокам могут быть наклеены бумажки, мешающие снятию крышки, их тоже следует удалить или разрезать.

Крышка снята, удаляем пыль пылесосом. Это первая причина выхода радиодеталей из строя. Она, покрывая толстым слоем детали, снижает теплоотдачу, что приводит к перегреву и сгоранию.

Поиск неисправности блока питания компьютера АТХ

Первым делом осматриваем все детали, уделяя особое внимание геометрии конденсаторов. Чаще всего, из-за повышенного режимы температуры, они выходят из строя. 50% блоков питания прекращают работу из-за неисправных конденсаторов. Это обусловлено плохой работой кулера. Смазка кулера высыхает и срабатывает, обороты уменьшаются. Охлаждение деталей уменьшается, вследствие чего происходит перегрев. Когда кулер начинает издавать шум, следует его почистить и смазать. Если видно вздутие конденсатора и подтек электролита, нужно его менять. Вздутие может произойти по причине пробоя в изоляции. Бывает такое, что внешне конденсатор цел, однако уровень пульсаций напряжения больше. В этом случае отсутствует контакт между выводом конденсатора и обкладкой. Как говорится, конденсатор находится в обрыве. Проверить обрыв можно при помощи тестера, установив режим измерений на сопротивление. В статье «Измерение сопротивления» описывается технология проверки конденсаторов.

Следующим шагом будет осмотр предохранителей, резисторов, полупроводниковых приборов. Внутри предохранителя по центру имеется тонкая блестящая цельная проволока, иногда она имеет утолщение в средине. Если ее не видно, скорее всего, произошло ее сгорание. Чтоб убедиться так ли это, прозваниваем предохранитель омметром. Если предохранитель сгорел, ремонтируем его или заменяем новым. Перед тем, как его заменить, для проверки блока питания не выпаиваем сгоревший предохранитель из платы, а припаиваем к его выводам жилу медного проводника, диаметр которого 0,18 мм. Если во время включения блока питания проводок не сгорит, имеет смысл заменить предохранитель новым.

Как заменить предохранитель в блоке питания компьютера АТХ

Чаще всего блок питания имеет трубчатый стеклянный предохранитель, который рассчитан на защитный ток 5 А. Чтоб обеспечить надежность, он впаивается в плату. Для этого существуют предохранители, на которых есть выводы под пайку.

Его можно заменить обычным предохранителем, ток защиты которого равен 5 А. К его торцам следует припаять кусочки одножильного провода, диаметр которых 0,5 мм и длина 5 мм.

Остается впаять предохранитель в плату и проверить его в работе.

Если во время включения блока питания произошло повторное сгорание предохранителя, это следствие пробоя переходов в тиристорах, либо выход из строя других элементов. Чтоб отремонтировать такой блок питания, необходимо обладать высокой квалификацией. Можно заменить предохранитель иным, рассчитанным на ток свыше 5 А. Но он все равно сгорит.

Поиск в блоке питания неисправных электролитических конденсаторов

Частой причиной нестабильной работы компьютера и выхода из строя блока питания является вздутие корпуса электролитического конденсатора. Чтоб предотвратить взрыв, на торце конденсатора делают надсечки. Когда давление в конденсаторе возрастает, корпус вздувается или разрывается именно в этом месте. Найти такой конденсатор не составит труда. Основная причина выхода из строя конденсатора заключается в плохой работе кулера или увеличения напряжения.

Глянув на фото, можно заметить, что конденсатор справа вздут и имеет следы подтека электролита, у левого конденсатора торец плоский. Его можно заменить. Чаще всего выходу из строя поддаются конденсаторы с питанием по шине +5 В, потому что запас напряжения мал и равен 6,3 В. Были случаи, когда конденсаторы цепи +5 В были вздуты. Когда я провожу их замену, устанавливаю конденсаторы не менее 10 В.

Чем больше напряжение конденсатора, тем лучше. Важно, чтоб он подошел по размерам. Если конденсатор не вмещается, я беру конденсатор с меньшей емкостью, но большим напряжением. Такая замена не приведет к ухудшению работы компьютера. Произвести замену конденсатора не составит труда, главное уметь обращаться с паяльником. Важно не забывать, что конденсатор со стороны отрицательного вывода имеет маркировку. Она нанесена в виде светлой широкой полосы, новый конденсатор следует устанавливать на то же место, где расположена эта полоса.

Проверка других элементов в блоке питания компьютера АТХ

Простые конденсаторы, а также резисторы не должны быть потемневшими и иметь нагар. Корпус полупроводников не должен иметь сколы и трещины. Если вы решили самостоятельно произвести ремонт, лучше всего заменить элементы, показанные на схеме. Если краска на резисторе потемнела, развалился тиристор, производить замену не имеет смысла.

По той причине, что, скорее всего из строя вышли другие элементы, исправность которых можно обнаружить только при помощи приборов. Если резистор потемнел, это не говорит о том, что он неисправен. Может быть, только краска стала темной, на само сопротивление в норме.

Если вспучились все конденсаторы, смысла проводить их замену я не вижу. Это свидетельствует о том, что схема стабилизации выходного напряжения вышла из строя, конденсаторы получили напряжение, превышающие норму. Этот блок питания можно отремонтировать, если есть навыки работы с измерительными приборами и электрическими элементами. Однако такой ремонт хорошо ударит по карману.

По материалам сайта: ydoma.info

Ремонт блока питания в домашних условиях: схемы и светы мастера

Слишком долго включается компьютер или при включении появляются посторонние звуки и запах горелого, иногда происходит самопроизвольное выключение ПК или блок питания компьютера не запускается – вполне возможно, эти признаки свидетельствуют о неисправности БП. Осталось только в этом удостовериться, заменив его на заведомо рабочий.

Если вы определили, что причиной всех бед вашего ПК является вышедший из строя блок питания, то у вас есть два варианта действий: купить новый БП или отремонтировать старый. Тех, кто решается на ремонт, сразу хочется предостеречь: в некоторых случаях его стоимость может превосходить цену нового блока питания, поэтому, прежде чем отдать БП в сервисный центр, хорошенько подумайте, есть ли смысл в этом?

Но для того чтобы выяснить судьбу вышедшего из строя БП, следует провести его диагностику, после чего станет понятным, что при некоторых неисправностях можно произвести ремонт своими руками, как говориться «на коленках». И быстрее получится и дешевле. Итак, решение принято, блок питания компьютера ремонтируем сами, тогда для этого необходимо, как любят повторять в армии, изучить мат. часть, а по-простому – заняться теоретической подготовкой.

Немного теории

На рисунке 1 показана структурная схема импульсного блока питания АТХ

Изначально, напряжение поступает на сетевой фильтр, который предназначен для сглаживания помех состоит из конденсаторов и дросселей. Проходя через выключатель, напряжение попадает на выпрямитель, состоящий из диодного моста и нескольких сглаживающих конденсаторов, ёмкостью около 400 мКф и рассчитанных на напряжение 400 В.

Теперь в цепи уже протекает постоянный ток, который попадает на высоковольтный транзисторный ключ, который переключается с определенной частотой, задаваемой схемой управления. После ключа, напряжение в цепи уже импульсное, но еще достаточно высокое. Теперь, его необходимо уменьшить до нужных нам отметок. За это отвечает трансформатор, со вторичных обмоток которого выходят напряжения в 5 и 12В как положительной, так и отрицательной полярности.

За выходными напряжениями следит плата управления, которая состоит из шим-контроллера и целого ряда компараторов, которые заменяет всего одна микросхема.

На рисунке 2 представлена структура микросхемы по управлению выходными напряжениями.

Кроме этого, существует еще источники напряжения: 5В – «дежурка» в блоке питания атх и 3.3 В, для питания процессора. Дежурное напряжение служит для запуска некоторых устройств в ПК, например модема, который для получения пакета из сети даст команду на «пробуждение» компьютера.

Основные причины выхода из строя БП

Основных причин, приведших к выходу из строя блок питания вашего ПК, на самом деле не так уж и много, поэтому рассмотрим каждую подробно.

  1. Перепады напряжения питающей сети. Тут все понятно: повышение напряжения выводит из строя элементы первичной цепи, который состоит из высоковольтных электролитических конденсаторов, и выпрямителя, если они установлены без достаточного запаса по току и напряжению.
  2. Некачественная сборка от неизвестного производителя. Все дело в том, что именитый производитель не жалеет деньги на детали для блока питания. Большинство дешевых аналогов используют запчасти из заводского брака, некалиброванные транзисторы, с большим разбросом параметров. Кроме того, хороший производитель всегда предусматривает в схеме защиту цепей, например, термистор в блоке питания компьютера, который отвечает именно за скачки тока при включении ПК. При превышении пределов по току, сопротивление термистора падает, при этом выгорает предохранитель, но, как правило, все остальные детали остаются невредимыми.
  3. Перегрузка БП мо мощности. Это достаточно частая причина поломки, когда максимальная мощность блока питания значительно меньше, чем совокупная мощность установленных в ПК устройств.
  4. Общая запыленность БП может привести к короткому замыканию между дорожками платы или другими деталями, так как пыль является неплохим проводником. Кроме того, пыль налипает на лопасти вентилятора и скорость его вращения значительно снижается. Что может привести к перегреву и без того, нагревающихся транзисторов, установленных на радиаторах.

Следует знать, что при повышении температуры, блок питания выдает значительно меньшую мощность, чем указано в паспорте, что может привести к его перегрузке и срабатыванию защиты.

 

Самостоятельный ремонт БП

Изначально говорилось о том, что некоторые поломки блока питания можно исправить в домашних условиях, не имея специальных знаний и аппаратуры. В любом случае, для ремонта вам понадобятся паяльник, мультиметр, отвертки, изолента и канцелярский нож.

Перед началом ремонтных работ, ПК следует обесточить и демонтировать БП из компьютера. После чего вывинтить болтики и снять крышку с блока питания.

Так выглядит расположение деталей на плате БП

Если вы не имеете понятия о напряжении, токе и использовании мультиметра, а также не имеете опыта в работе с высоким напряжением, то лучше всего, обратитесь за помощью к профессионалам.

  1. Если блок питания не запускается и отсутствует выходные напряжения, то следует проверить конденсаторы фильтра и исправность транзисторов в первичной цепи. Кроме того, если был скачек напряжения, то следует проверить термистор и предохранитель. Неисправные конденсаторы при такой поломке может раздуть и это видно невооруженным глазом. Термистор, как правило, обугливается, а предохранитель не звонится мультиметром.

    Транзисторы перед проверкой следует выпаивать, но для этого их необходимо снять с радиаторов. При замене конденсаторов важно соблюдать полярность.

  2. Если неисправность не обнаружена, то проверьте напряжение на конденсаторах выпрямителя. Оно должно составлять 310 В. Если его нет, то следует проверить все детали выпрямителя.
  3. Если не крутится вентилятор, то следует проверить его работоспособность. Если неисправность не выявлена, то проверьте наличие питания вентилятора. Отсутствие +12 В говорит об вышедшей из строя диодной сборке выпрямителя, проблемах с дросселем. Причиной отсутствия вращения вентилятора может быть выгоревший терморезистор в блоке питания компьютера. Проверять диоды, необходимо выпаивая из платы.

    Важно знать, что на радиаторах установлены не только транзисторы из первичной цепи, но и диоды Шоттки во «вторичке», которые находятся в выпрямителе.

  4. Если не происходило дополнительной установки оборудования, а внезапно БП стал выключаться от перегрузки, то следует отключить его от всех нагрузок, кроме одной, и произвести запуск практически в холостом режиме. Если это не помогает, то, проблема в силовом трансформаторе, который следует заменить.

И последнее: если ремонт БП выходит за рамки представленного материала в этой публикации, то лучше всего приобрести новый или доверить ремонтные работы специалистам. Если у вас возникли неразрешенные проблемы с работой ПК, то смело обращайтесь к специалистам нашей компании, мы всегда готовы взяться за любую сложную работу. Работаем как по городу Челябинску, так и по области.

✔Как отремонтировать блок питания компьютера

Сегодня мы будем ремонтировать блок питания компьютера.

Внимание! Инструкция рассчитана на опытных пользователей, которые имеют опыт работы с электрическими компонентами. Заниматься ремонтом без опыта по данной инструкции запрещено!

Проблема проста — наш подопытный включается через раз. Неисправность появляется практически при каждом запуске, но если несколько раз включить и выключить блок питания, то все становится все нормально. Данная инструкция подойдет для большинства блоков питания, которые выпускаются современными производителями. Вообще следует отметить тот факт, что принципы работы блоков питания всегда остаются идентичными.

Итак, приступим.

Проблема, которая озвучена в начале, часто появляется из-за плохого контакта переключателя. Чтобы проверить последнее достаточно несколько раз щелкнуть переключателем. Блок запустился? Пусть и не с первого раза.

Значит проблема не в нем и нужно разбирать устройство. Раскрутим блок питания. Снимаем крышку и смотрим. Ищем конденсаторы, которые обладают неровной верхней плоскостью — другими словами, нужно найти вздутый конденсатор. 

Можно сразу сказать, что вздутый конденсатор точно потерял свою емкость. Ведь внутри такого конденсатора всегда происходят разнообразные химические процессы.

Таким вот образом — только по внешнему виду, легко диагностировать даже непонятные на первый взгляд неисправности блока питания. Для сравнения найдем в нашем БП исправный конденсатор и внимательно осмотрим его — голова имеет характерный крестик и ровную верхнюю плоскость. Нам придется разобрать весь блок питания и заодно оценить состояние остальных конденсаторов.

Это не так сложно! Начнем.

Для замены вздутых конденсаторов нам понадобятся доноры.

Продолжаем ковырять блок питания — выпаиваем все вздутые и подозрительные конденсаторы. Необходимо заменить их донорами, которые имеют идентичные показатели. Заменяем конденсаторы при помощи паяльника. Делаем все манипуляции осторожно, медленно и аккуратно. Главное то, что должен быть опыт подобной работы. Если такого опыта нет, то лучше найти помощника, который разбирается в электричестве. Подключаем сетевой шнур.

Предупреждение! Не рекомендуется указанным способом проверять работоспособность электрических приборов, которые питаются от сети переменного тока. Все действия вы делаете на свой страх и риск!

Подключаем тестер и ставим перемычку — чтобы запустить блок питания (в нашем случае — это зеленый и черный провод). Включаем систему. Вентилятор крутится? Уже хорошо.

Смотрим на экран тестера. В идеале он должен показывать 12 вольт. Теперь проверяем наличие 5 вольт. Если всё работает, то ремонт блока питания можно считать оконченным. Но надо еще проверить работу нашего устройства непосредственно на железе. Следует оговориться — в идеале всегда лучше покупать новые конденсаторы именно того номинала, которым обладают вышедшие из строя конденсаторы, а не искать замену на испорченных приборах. 

Устанавливаем отремонтированный блок питания в системный блок и переходим к полевым испытаниям. Запускаем компьютер. Если вентилятор зашумел и машина запустилась с первого раза, то ремонт БП можно считать успешным.

пошаговая инструкция, как починить зарядное устройство

Автор Акум Эксперт На чтение 10 мин Просмотров 2.4к. Опубликовано Обновлено


На сегодняшний день ноутбук (а то и два) в доме – привычное явление. И ломаются они не реже, чем настольные ПК. Скорее даже чаще, поскольку не “сидят” на месте в буквальном смысле слова, а от неисправностей, которым подвержены ПК, они тоже не застрахованы. В этой статье мы попробуем отыскать неисправность и самостоятельно провести ремонт блока питания (БП) ноутбука.

Какие неисправности встречаются чаще всего

Наиболее распространенная проблема, возникающая при эксплуатации бука, это, конечно, разъем питания. Если мы придерживаем провод рукой, прыгая с кровати за стол и обратно, то обычно все в порядке. Но многие ли так делают? Взял машину и пошел, а блок питания ноутбука волочится сзади, создавая немалую нагрузку на разъем.

В этой ситуации чаще всего страдает не вилка БП, а гнездо ноутбука. Но замена гнезда не является темой статьи, а потому рассматривать мы ее не будем.

Не менее редко у блока питания переламывается провод. Обычно выходной, поскольку сетевой толщиной с карандаш и жесткий, как проволока, переломить сложно. Выходной же может переломиться как возле штекера, так и возле самого блока питания.

В этом месте провод подвергается постоянным перегибам, так что ничего странного

Сами же БП выходят из строя гораздо реже, но и это случается. Перенапряжение, перегрузка, удары, банальный брак – все случается. Бывает даже так: выключил вечером вполне исправный ноутбук, а утром он запускается от аккумуляторов, поскольку блок питания почему-то не работает.

Как заменить штекер или устранить повреждение провода

Начнем с самого простого – ремонта переломившегося кабеля питания ноутбука. Перекусываем провод в месте повреждения и зачищаем оба его конца.

Провода зачищены

Полезно! Если провод переломился под самый штекер (или блок питания), то придется немножко доработать сам штекер или втулку БП. Берем монтажный нож или простое лезвие безопасной бритвы и срезаем часть штекера (втулки).

Столько, думается, будет достаточно для пайки

Надеваем на провод две термоусадочных трубки разного диаметра. Это удобнее, надежнее и эстетичнее, чем изолента.

Надеваем термоусадку

Теперь вооружаемся паяльником, тщательно облуживаем зачищенные места и спаиваем центральные провода. Надвигаем на место пайки тонкую термоусадку.

С центральным проводом все – спаян и заизолирован

Греем трубку спичками, чтобы она «села». Спаиваем экраны, стараясь не пережечь изоляцию центральной жилы. Для этого в месте пайки на центральную жилу можно положить кусочек электрокартона.

Экран спаян

Натягиваем вторую трубку, усаживаем ее газовой горелкой или зажигалкой, и дело сделано.

Работа окончена, провод, как новенький

Если нет термоусадочных трубок нужного диаметра, то вполне подойдет и обычная изоляционная лента. Это будет не так эстетично, но вполне надежно.

Теперь кратко по ремонту и замене штекера. Такая операция может понадобиться при плохой заводской пайке, если провод переломился очень глубоко в оболочке разъема или мы желаем эстетики.

Отрезаем провод в месте перелома или выше. При помощи монтажного ножа разрезаем оболочку по всей длине. Выворачиваем ее, вытряхиваем внутренности, отпаиваем от штекера провода (если они уже не отвалились из-за плохой пайки) и получаем следующее:

«Разобранный» неразборный разъем 

Зачищаем отрезанный провод, облуживаем, припаиваем центральную жилу, тщательно ее изолируем. Припаиваем экран.

Пайка окончена, осталась сборка 

Берем разрезанную оболочку, подрезаем ее изнутри так, чтобы ее можно было установить на место и концы в месте разреза сошлись. Надеваем на оболочку термоусадку диаметром 10 мм, усаживаем ее прогревом над горелкой газовой плиты. Для передней части разъема берем термоусадочную трубку диаметром 13 мм. Надеваем, усаживаем и готово.

Не так, как на заводе, но вполне эстетично

Что касается полной замены, то тут все очевидно. Все новые штекеры разборные. Отрезаем старый, припаиваем новый, не забыв перед пайкой надеть на провод оболочку. Припаяли, зажали кабель специальным обжимным лепестком (на фото ниже помечен стрелкой),  надвинули на место пайки оболочку и все.

Новые штекеры всегда разборные 

С проводами и разъемами вроде разобрались. Теперь перейдем непосредственно к ремонту блоков питания ноутбуков. Хотелось бы сразу предупредить, что для проведения ремонта необходимо обладать хотя бы минимальными знаниями радиотехники, уметь держать в руках паяльник и пользоваться измерительными приборами. Если все это в наличии, то можно начать.

Как вскрыть корпус БП

Прежде чем начать ремонт зарядного устройства для ноутбука, его нужно разобрать, поскольку практически все БП для буков неразборные. Тем не менее разобрать БП можно и без особых сложностей. Рассмотрим два варианта.

Вариант разборки 1

Вооружаемся обычным медицинским шприцом, заполняем его бензином. Тщательно проливаем шов БП по всему периметру. Ждем 5-10 минут и повторяем операцию.

Заливаем в шов бензин

Теперь берем отвертку с плоским жалом и свободно разъединяем части корпуса. Если не получается, повторяем процедуру.

Корпус блока питания ноутбука разобран

Вариант разборки 2

К сожалению, бензин не всегда помогает – все будет зависеть от материала корпуса и метода его соединения. Если, к примеру, он сварен, то бензин не поможет. В этом случае вооружаемся ножом и молотком. Наставляем на шов нож и, слегка постукивая по нему молотком, проходим по периметру.

Вскрытие БП ноутбука при помощи ножа

Тем же ножом разъединяем части корпуса.

Корпус блока питания ноутбука вскрыт

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Важно! Стучим молотком аккуратно, контролируя силу, чтобы не прорубить корпус насквозь и не повредить сам блок питания. Не стоит стараться сделать все быстро и с первого раза. Если после одного прохода разъединить половинки корпуса не получается, лучше пройтись ножом с молотком еще раз.

Типовые схемы блоков питания ноутбуков

Прежде чем заняться ремонтом, разберемся в принципе работы БП  буков. Для этого рассмотрим пару типовых схем БП для ноутбуков. Начнем с более простого.

Схема простого блока питания для ноутбука

На схеме цифрами обозначены узлы:

  • 1 – блок входных фильтров и выпрямитель;
  • 2 – генератор с ШИМ и силовым ключом;
  • 3 – импульсный трансформатор;
  • 4 – низковольтный выпрямитель;
  • 5 – схема стабилизации выходного напряжения.

Сетевое напряжение, пройдя через сетевой фильтр, выпрямляется диодным мостом, сглаживается и поступает на импульсный трансформатор. Управляет протеканием тока через трансформатор задающий генератор, оснащенный мощным ключом на полевом транзисторе. Пониженное трансформатором напряжение выпрямляется низковольтным выпрямителем и через индуктивный фильтр подается на нагрузку.

Стабилизация выходного напряжения осуществляется при помощи обратной связи – напряжение с дополнительной обмотки поступает на оптрон узла стабилизации, а тот, в свою очередь, управляет работой узла ШИМ задающего генератора, изменяя скважность импульсов управления трансформатором.

Следующая схема более сложная, обладает лучшими, чем предыдущая, характеристиками, но принцип работы практически тот же:

Более сложная схема БП для ноутбука

На схеме цифрами обозначены узлы:

  • 1 – блок входных фильтров и выпрямитель;
  • 2 – генератор с ШИМ;
  • 3 – температурная защита;
  • 4 – импульсный трансформатор;
  • 5 – силовой ключ на полевом транзисторе;
  • 6 – низковольтный выпрямитель;
  • 7 – схема стабилизации выходного напряжения.

Сетевое напряжение фильтруется и выпрямляется, затем поступает на импульсный трансформатор, который управляется ШИМ-генератором при помощи внешнего силового ключа. Пониженное трансформатором импульсное напряжение выпрямляется и подается в нагрузку. Узел стабилизации через оптопару представляет собой обратную связь для стабилизации выходного напряжения. Узел температурной защиты отключит БП, если температура его узлов (в частности, силового ключа) станет слишком высокой.

На этом, думается, можно остановиться, поскольку все БП для ноутбуков имеют такую же структурную схему и работают по одному и тому же принципу импульсного преобразования. Различия заключаются лишь в схемотехнике. Сложный узел имеет лучшие характеристики, простой – худшие. Но все они выполняют одни и те же функции. Так что, поняв, как работают блоки питания, схемы которых мы рассмотрели, несложно разобраться в любом другом.

Важно! Разобраться полностью, конечно, сложно, но выявить те узлы, что мы разобрали, можно будет без труда. А это главное, поскольку именно эти узлы чаще всего выходят из строя.

Проводим диагностику и устраняем неисправности на плате

Ну а теперь пошаговая инструкция по ремонту блока питания ноутбука своими руками. При этом подразумевается, что напряжение в розетке есть, а сетевой шнур БП исправен.

1. Визуальный осмотр. Внимательно осматриваем все элементы платы. Они должны иметь естественный цвет, без потемнения и пятен. Никакого внешнего повреждения. То же самое касается и дорожек на плате – ничего не почернело, не подгорело, все пайки красивые. Особое внимание обращаем на электролитические конденсаторы. Если их торец вздулся или вообще поврежден, то элемент придется заменить.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Если входной высоковольтный конденсатор вздулся, то очень может быть, что пробит диодный мост. Поменяв конденсатор, не торопимся включать БП в сеть, а прозваниваем диоды моста. То же касается и низковольтной части – после замены конденсатора обязательно проверяем выпрямительные диоды.

2. Цепи защиты. К ним относится предохранитель, а в некоторых качественных БП еще и варистор, стоящий сразу после предохранителя (в наших схемах его нет). Сопротивление предохранителя должно равняться нулю, варистора – бесконечности.

3. Цепи входного фильтра. Все дроссели должны иметь минимальное (доли Ома) сопротивление. Токоограничивающий резистор – от 5 до 15 Ом.

4. Высоковольтный выпрямительный мост. Состоит из четырех отдельных диодов или выполнен в виде диодной сборки. Измерения каждого отдельного диода или каждого диода сборки проводим мультиметром, включенным в режим проверки диодов (не сопротивления!). В прямом включении прибор должен показать сопротивление в несколько сот Ом, в обратном – бесконечность. Сами полупроводники при этом выпаивать не нужно.

5. Силовой ключ. Если силовой ключ, роль которого исполняет полевой транзистор, внешний, а не встроен в микросхему, то его нужно прозвонить. Выпаиваем, прозваниваем сток-исток (режим проверки диодов). В обоих направлениях прибор должен показать бесконечность.

6. Импульсный трансформатор. В принципе, выход из строя импульсного трансформатора – дело довольно редкое. Но если ничего не помогло и есть схема под рукой, то можно его выпаять и прозвонить обмотки.

Важно! Прозвонка трансформатора далеко не всегда может выявить его неисправность. К примеру, наличие короткозамкнутых витков выявить тестером невозможно. В некоторых случаях более эффективным методом является визуальный осмотр.

7. Низковольтный выпрямитель. Для проверки диодов низковольтного выпрямителя их придется выпаять. В остальном они проверяются так же, как и диоды высоковольтного моста.

8. Цепи выходного фильтра. Дроссели фильтра прозваниваем так же, как и дроссели входного фильтра.

Вот, в принципе, и все действия, которые может выполнить непрофессионал. Более сложную неисправность без специальной подготовки и приборов, увы, обнаружить, а следовательно, и   устранить не удастся. Придется обратиться к специалисту.

Вот вроде и все о ремонте блока питания для ноутбука. Надеемся, что приведенная информация будет полезной, а ремонт пройдёт успешно.

Спасибо, помогло!5Не помогло

инструкция по исправлению неисправностей своими руками

Несмотря на кажущуюся мощь, персональный компьютер — хрупкая вещь. Чтобы вывести из строя какую-нибудь деталь, достаточно просто неаккуратного обращения с ней. Например, не чистить системный блок и его компоненты. В результате на деталях образуется много пыли, которая негативно влияет на работы устройства в целом.

Один из важнейших компонентов ПК — блок питания. Именно он распределяет электричество по системному блоку и контролирует уровень напряжения. Поэтому поломку этого устройства можно отнести к одной из самых неприятных. Тем не менее заняться ремонтом и исправить проблему своими руками под силу каждому.

Признаки неработающего блока питания

Самая критичная ситуация — это когда компьютер не реагирует на кнопку включения. Это значит, что были пропущены важные моменты, которые могли указать на скорую поломку. Например, неестественный звук во время работы, долгое включение компьютера, самостоятельное отключение и т. д. А может подобные неисправности и были замечены, но было решено к ремонту не прибегать.

Кроме самых критичных моментов, существует несколько признаков, которые помогут выявить проблемы в работе компьютерного блока питания:

  • Возникновение различных ошибок при включении ПК.
  • Внезапные перезагрузки компьютера.
  • Повышение громкости работы кулеров (небольших вентиляторов).
  • Различные ошибки при включённом ПК.
  • Прекращение работы жёсткого диска или некоторых кулеров.
  • Громкое пищание из системного блока (говорит о перегреве).
  • Удары электрическим током при прикосновении к корпусу.

Подобные признаки указывают на необходимость скорого ремонта, который можно провести своими руками. Тем не менее существуют и более серьёзные проблемы, явно указывающие на серьёзную неисправность. Например:

  • «Экран смерти» (синий экран при включении или работе устройства).
  • Появление дыма.
  • Нет реакции на включение.

Большинство людей при возникновении подобных проблем обращаются к мастеру за ремонтом. Как правило, компьютерный специалист советует приобрести новый блок питания, а затем установить его вместо старого. Тем не менее с помощью ремонта, можно своими руками «реанимировать» неработающее устройство.

Главные причины неисправностей

Чтобы полностью решить проблему, необходимо понять, из-за чего она могла появиться. Чаще всего блок питания компьютера выходит из строя по трём причинам:

  • Перепады напряжения.
  • Низкое качество самого изделия.
  • Неэффективная работа вентиляционной системы, приводящая к перегреву.

В большинстве случаев подобные неисправности приводят к тому, что блок питания не включается или перестаёт работать после непродолжительной работы. Кроме того, вышеописанные проблемы могут негативно сказаться на материнской плате. Если это случилось, то ремонтом своими руками здесь не обойтись — необходимо будет менять деталь на новую.

Реже неисправности в БП компьютера возникают из-за следующих причин:

  • Некачественное ПО (плохая оптимизация ОС плохо сказывается на работе всех компонентов).
  • Отсутствие чистки компонентов (большой объём пыли заставляет кулеры работать быстрее).
  • Много лишних файлов и «мусора» в самой системе.

Как было сказано выше, блок питания — довольно хрупкая вещь. Тем не менее она очень важна для компьютера в целом, поэтому не стоит этот компонент обделять вниманием. Иначе ремонт неизбежен.

Устройство компьютерного блока питания

Блок питания в компьютере отвечает за распределение и преобразование электрического тока. Дело в том, что каждый элемент в ПК нужен свой уровень напряжения. Кроме того, в электросетях применяется ток переменного характера, а компоненты компьютера работают от постоянного. Поэтому устройство блока питания довольно специфично и для ремонта своими руками его нужно знать.

В каждом БП есть 9 важных компонентов:

  • Основная плата (большой и плоский компонент) — сюда крепятся многие детали (по аналогии с материнской платой).
  • Входной фильтр (устройство, закреплённое на крупных проводах) или силовые конденсаторы (изделия в форме цилиндра) — нужны для «сглаживания» напряжения.
  • Инвектор напряжения (катушка из крупной медной проволоки, установленная у одной из стенок) или диодный мост (пластиковое устройство, по форме напоминает сим-карту, имеющую 4 металлических диода) — отвечает за преобразование мощности.
  • Схема контроля напряжения (системная плата, установленная вертикально рядом с инвектором) — контролирует уровень тока.
  • Трансформатор (маленькое пластиковое устройство с цифрами и буквами) — создаёт необходимое напряжение в блоке питания.
  • Импульсный трансформатор (похож на предыдущий компонент, но большего размера) — получает от инвектора высокое напряжение, чтобы поменять его в низковольтное.
  • Радиатор (обычно это решётка серого цвета) — необходим для охлаждения.
  • Плата с разъёмами для проводов (присутствует не во всех моделях блоков питания) используется для отключения неиспользованных проводов.
  • Силовой дроссер (обычно это медная катушка с разноцветными проводами) — занимается групповой стабилизацией напряжения.
  • Контроллер оборотов кулера (небольшое пластмассовое устройство, иногда устанавливается не на основную, а на дочернюю плату) — отвечает за регулировку работы вентилятора в блоке питания.

Не имея хотя бы приблизительного представления об устройстве блока питания, невозможно в полной мере провести самостоятельный ремонт.

Меры предосторожности

Перед тем как приступить к решению проблемы в компьютере своими руками, необходимо подумать о собственной безопасности. Ремонт подобного устройства — опасное занятие. Поэтому в первую очередь нужно работать вдумчиво и без спешки.

Для большей безопасности следует помнить о нескольких важных правилах:

  • Работать только с выключенным блоком питания. Несмотря на банальность совета, это очень важный момент. Никто не застрахован от «синдрома дурака», поэтому лучше проверить лишний раз, что всё выключено, а лишь затем приниматься за ремонт.
  • Чтобы сохранить компоненты, а также избежать «фейерверка», рекомендуется вместо предохранителя установить лампочку на 100 ватт. Если при включении блока питания лампочка остаётся гореть, то сеть где-то замкнуло. Если же она загорается и сразу гаснет, то всё в порядке.
  • Особенно долго под напряжением находятся силовые конденсаторы. Поэтому даже после отключения БП от сети, не следует сразу приниматься за работу.
  • Проверять работу устройства лучше вдали от воспламеняющихся веществ, т. к. существует риск короткого замыкания и «фейерверка» искр.

Необходимые инструменты

Чтобы ремонт блока питания был простым, но эффективным, каждому домашнему мастеру потребуется определённый инструментарий для работы. Все эти изделия можно без труда найти у себя дома, попросить у соседей/друзей или приобрести в магазине. Благо, стоят они недорого.

Итак, для ремонта потребуются следующие инструменты:

  • Паяльная станция со встроенной регулировкой мощности или несколько паяльников, каждый из которых рассчитан на определённую мощность.
  • Припой и флюс для припайки компонентов.
  • Для удаления припоя — оплётка или отсос.
  • Несколько отвёрток с разными наконечниками.
  • Мультиметр.
  • Бокорезы (устройства для разрезания пластиковых «хомутов», которыми скрепляются провода).
  • Лампочка на 100 Вт.
  • Пинцет (для снятия маленьких компонентов).
  • Спирт или очищенный бензин.
  • Возможно, потребуется осциллограф (если причина неисправности не установлена).

Осмотр и диагностика

Вначале необходимо разобрать блок питания. Для этого понадобится только отвёртка и аккуратность. При выкручивании болтов не нужно трясти БП, чтобы поскорее установить проблему. Неаккуратное обращение с ним может привести к тому, что ремонт своими руками будет попросту бесполезен.

Для правильной постановки «диагноза» необходимо провести первичную диагностику, а также визуальный осмотр устройства. Поэтому в первую очередь необходимо обратить внимание на вентилятор блока питания. Если кулер не может свободно крутиться и застревает в определённом месте, то проблема явно заключается в этом.

Помимо вентилятора изделия, также следует осмотреть устройство в целом. После длительного срока службы в нём скапливается много пыли, которая оказывает негативный эффект и затрудняет нормальную работу БП. Поэтому следует в обязательном порядке почистить изделие от скопления пыли.

Также некоторые изделия выходят из строя из-за перепадов напряжения. Поэтому необходимо провести визуальный осмотр на предмет сгоревших деталей. Этот признак легко выявить по вздутию конденсаторов, потемнению текстолита, обугленности изоляции или оборванности проводов.

Инструкция по ремонту

Наконец, стоит перейти к самому главному моменту — ремонту БП своими руками. Для удобства весь процесс будет представлен в виде списка. Поэтому рекомендуется не «прыгать» с одного пункта на другой, а действовать в определённом порядке:

  1. Осмотр предохранителя. При обнаружении следов плавления, не нужно сразу заменять изделие. Обычно это является следствием проблем с другими компонентами. Поэтому рекомендуется проверить силовые транзисторы и диодный мост.
  2. Если повреждений на других компонентах не обнаружено, а сам предохранитель вздулся — следует выпаять его из платы. Затем прогреть металлические заглушки и убрать их со стеклянной трубки. Наконец, необходимо вставить проволоку нужного диаметра, запаять отверстия и установить предохранитель на место.
  3. Осмотреть термистор. Практически всегда этот элемент перестаёт работать из-за скачков напряжения. Поэтому если это устройство почернело и раскалывается при прикосновении, нужно заменить термистор, а затем предохранитель.
  4. Проверить состояние элементов первичной цепи (тех, которые установлены рядом с термистором и предохранителем).
  5. Осмотреть конденсаторы. Если внешних признаков повреждения не обнаружено, можно выпаять эти элементы и проверить мультиметром.
  6. Достать кулер, смазать машинным маслом его подшипники и затем установить вентилятор на место.
  7. Мультиметром измерить сопротивление каждого диода в мосту. Если сопротивление различается — требуется замена неисправного элемента. Неработающие компоненты заменяются на диоды Шоттки.
  8. Осмотреть печатную плату. При тщательном осмотре можно выявить небольшие кольцевые трещины, которые нарушают соединение контактов. Если подобная неисправность была обнаружена, необходимо использовать пайку для закрытия трещин.
  9. Осмотреть контакты резисторов, предохранителя, трансформатора, а также индуктора. Если были замечены проблемы в соединении с платой или кольцевые трещины, то нужно исправлять повреждения пайкой.

Проблем не замечено, но БП не работает

Случается так, что внешне всё в порядке: комплектующие не расплавлены, трещин и нарушений контактов нет. В чём тогда проблема? Лучше всего ещё раз внимательно осмотреть все детали. Вполне возможно, что по невнимательности была пропущена какая-либо неисправность. Если при вторичном осмотре проблем не выявлено, то в 90% случаев неисправность кроется в дежурном питании или в контроллере ШИМ, использующего широкую импульсную модуляцию.

Чтобы исправить проблему с дежурным напряжением, необходимо знать основы работы блока питания. Этот компонент ПК работает практически всегда. Даже когда сам компьютер выключен (в не отключен от сети), блок работает в дежурном режиме. Это значит, что БП отправляет на материнскую плату «дежурные сигналы» в 5 вольт, чтобы та при включении ПК могла запустить сам блок и другие компоненты.

При запуске системы материнская плата проверяет напряжение для всех элементов. Если всё в порядке, формируется ответный сигнал «Power good» и система запускается. Если же наблюдается недостаток или избыток напряжения, запуск системы отменяется.

Это значит, что в первую очередь на плате нужно проверить наличие 5 В на контактах PS_ON и +5VSB. При проверке обычно выявляется отсутствие напряжения или его отклонение от номинала. Если проблема наблюдается в PS_ON, причина в контроллере ШИМ. Если же неисправность с контактом +5VSB, то проблема кроется в устройстве преобразования электрического тока.

Также нелишним будет проверить сам ШИМ. Правда, для этого понадобится осциллограф. Для проверки нужно выпаять ШИМ и с помощью осциллографа провести прозвоном проверку контактов (OPP, VCC, V12, V5, V3.3). Для лучшего прозвона, проверку надо проводить относительно земли. Если сопротивление между землёй и каким-либо из контактов (порядка нескольких десятков Ом), то ШИМ необходимо заменить.

И в заключение

Самостоятельный ремонт блока питания — довольно сложный процесс, для которого потребуется необходимый инструментарий, начальные знания о работе БП, а также аккуратность и внимание к деталям. Тем не менее каждый человек при должном подходе может отремонтировать блок, несмотря на его сложное устройство. Поэтому следует помнить, что всё в ваших руках.

Поиск и устранение неисправностей блока питания ПК

Когда компьютер внезапно выходит из строя по непонятной причине, проверка блока питания ПК в первую очередь может сэкономить много времени на поиск и устранение неисправностей в системе. Неисправный блок питания ПК свидетельствует о множестве периодически возникающих проблем с компьютером. Вот почему опытные специалисты по ПК часто сначала смотрят на блок питания при диагностике аппаратных проблем ПК.

  • Системные сбои во время загрузки.
  • ПК вообще не включается
  • Самопроизвольные перезапуски или блокировки при попытке использовать машину
  • Корпусные вентиляторы и жесткие диски, которые не вращаются
  • Система перегрева из-за отказа радиатора и вентилятора
  • Ошибки, связанные с системной памятью
  • Повторяющийся синий экран смерти (BSOD)

Если ПК вообще не включается

Как и в случае любой другой ситуации по устранению неполадок, отсоедините от ПК все периферийные устройства, кроме необходимых.Обычно это означает, что у вас остаются подключенные только мышь, клавиатура и монитор.

Многие блоки питания имеют внешний переключатель, расположенный на задней панели блока. Убедитесь, что он не был случайно выключен. Подключите кабель питания блока питания к розетке или к сетевому фильтру и включите компьютер. У большинства моделей блоков питания есть индикатор на задней панели блока, который светится при включении. Если он не горит, попробуйте использовать другой кабель питания и другую розетку, чтобы исключить эти предметы как источник проблемы.

Обычно вы можете наблюдать несколько вещей, которые указывают на правильную работу блока питания.

  • Прислушивайтесь к корпусным вентиляторам и механическим жестким дискам. Вы должны услышать, как эти устройства вращаются.
  • Проверьте подключение каждого кабеля блока питания, идущего к аппаратному компоненту компьютера.
  • Загляните внутрь корпуса на предмет подсветки материнской платы. Обычно мигающие индикаторы на материнской плате указывают на неисправный или неправильно подключенный блок питания.

Кроме того, цвет подсветки материнской платы может указывать на другие неисправные компоненты.Коды индикаторов и звуковых сигналов BIOS зависят от производителя. Для получения этой информации обратитесь к руководству по материнской плате.

Использование скрепки для проверки источника питания

Тест скрепки, также называемый тестом перемычки, позволяет проверить работоспособность блока питания, когда он отключен от компонентов внутри ПК. Этот тест выявит некоторые распространенные проблемы:

  • Короткое замыкание внутри блока питания
  • Неисправные компоненты
  • Подключение к сети под напряжением

Сначала вы хотите повернуть выключатель питания на задней панели источника питания в положение «выключено».(O должно быть «вниз»)

Найдите разъем 20 + 4P (24-контактный). Согните скрепку и вставьте один конец в зеленую булавку (PS_ON), ​​а другой — в любую из черных булавок (Земля).

Нажмите переключатель на задней панели блока питания и прислушайтесь к внутреннему вентилятору. Если вы слышите звук вентилятора, значит, питание включено.

Тест со скрепкой — это грубый, но эффективный способ проверить, нуждается ли ваш блок питания в замене. Больше он вам ничего не скажет.Если ваш блок питания прошел тест на скрепку, вам все равно может потребоваться выявить связанные проблемы:

  • Колебания напряжения
  • Перегрев
  • Неисправность шины питания

Стоит ли достать мультиметр?

Чтобы выполнить более детальное тестирование источника питания, вам необходимо использовать или купить мультиметр. Мультиметр — это прибор, который измеряет электрический ток, в основном напряжение (вольты), ток (амперы) и сопротивление (Ом). Если вы специалист по электронике, возможно, он у вас уже есть, и вы наверняка знакомы с этим инструментом.

Если вы работаете в качестве внутреннего ИТ-специалиста, вероятно, не стоит уделять слишком много времени тестированию и ремонту блоков питания. Стоимость нового блока питания относительно невысока и не оправдывает многочасового персонала, посвященного сложной диагностике. Обычно отделы, управляющие несколькими компьютерами, держат запасные блоки питания под рукой для тестирования «подкачки», чтобы определить, когда блок питания является основной причиной повторяющихся компьютерных проблем.

Если ваши компьютеры находятся на гарантии и вы подозреваете, что виноват блок питания, то тогда вы должны воспользоваться поддержкой производителя и гарантией на приобретенные вами настольные компьютеры.Если вы покупаете компьютеры для бизнеса в виде готовых систем, производителю лучше использовать ресурсы компании для устранения неисправностей блоков питания и других компонентов компьютера, а ваша команда приступит к работе над только что замененным компьютером.

Как отремонтировать блок питания компьютера


Если блок питания поврежден или не работает, компьютер также не сможет работать. Прежде чем приступить к ремонту блока питания компьютера, необходимо определить причину поломки.Повреждение источника питания обычно вызывается тремя факторами: нестабильным напряжением, чрезмерной нагрузкой, а также плохой системой заземления. Чтобы выяснить это, мы должны сначала провести тестирование, чтобы диагностировать повреждение источника питания, шаги следующие:

  1. Прежде всего, отключите кабель питания БП от электрических соединений.
  2. Отключите БП, выход подключен ко всем компонентам компьютера.
  3. Вставьте обратно шнур питания блока питания, который был отключен от сети.
  4. Подготовьте перемычку проводов от 10 до 20 см, чтобы оба конца были сняты.
  5. Удерживая кабель выходного блока питания (порт с 20 контактами или 24 контакта), соедините зеленый кабель с черным кабелем с помощью кабельной перемычки.
  6. Если оба кабеля были подключены, а вентилятор вращается, то состояние блока питания хорошее, а если вентилятор не работает, то блок питания неисправен.

Однако, если повреждение было вызвано поломкой одного из компонентов блока питания, выходное напряжение может стать нестабильным и повредить другие компоненты вашего компьютера.Поэтому не забывайте проверять каждый кабель по цвету. Вот список выходных напряжений блока питания.

  • Красный: + 5 В
  • Белый: — 5 В
  • Черный: 0 В на массу
  • Желтый: + 12 В
  • Синий: — 12 вольт
  • Пурпурный: +5 вольт на
  • Оранжевый: + 3 В
  • Зеленый: постоянный ток включен
  • Коричневый: датчик напряжения согласно MB

После диагностики повреждения блока питания компьютера следующим шагом является ремонт существующего компонента в блоке питания, если действительно есть повреждение.Перед этим, пожалуйста, обратитесь к примеру схемы блока питания компьютера на изображении выше.

Как отремонтировать блок питания компьютера

  1. Во-первых, отключите все входные порты источника питания, которые подключены к сети, или выходные порты, подключенные к компонентам компьютера.
  2. После этого выньте блок питания из корпуса компьютера.
  3. Откройте коробку источника питания, очистите внутреннюю часть источника питания и проверьте, есть ли горящие компоненты, горение обычно является компонентом elco.
  4. При обнаружении ослабьте компоненты и замените их новыми. Если нет, проверил ли раздел проверки предохранителя, если его состояние все еще хорошее или нет, путем измерения его с помощью омметра.
  5. Затем проверьте силовой переключающий транзистор 2SC3039 (две части), который предназначен для управления источником питания в режиме ШИМ.
  6. Снимите два транзистора печатной платы, чтобы проверить его состояние. Если все в порядке, проверьте секцию диодного моста.
  7. Проверьте состояние каждого диода с помощью мультиметра.Повреждение источника питания часто происходит из-за того, что есть один излучающий диод.
  8. После этого проверьте транзисторы генератора импульсов, конденсаторы, а также имеющийся резистор на одном блоке схем генератора импульсов. Убедитесь, что все компоненты исправны и работают нормально.
  9. Не забывайте проверять каждую точку пайки компонентов. Убедитесь, что нет пайки, учитывая высокую температуру внутри блока питания.
  10. Если все компоненты проверены и исправны, высока вероятность повреждения компонента ICTL494.Для проверки компонента микросхемы TL494 нельзя использовать мультиметр.
  11. Следовательно, вам следует попробовать заменить старые компоненты микросхемы TL494 на новые.
  12. Проведите тест еще раз.

Надеюсь, эта статья: как отремонтировать блок питания компьютера оказалась полезной

Теги: исправить блок питания компьютера исправить блок питания компьютера ремонт блока питания ATX ремонт блока питания компьютера обслуживание блока питания компьютера

Ремонт импульсных блоков питания

В этой статье Скотт Дорси рассказывает нам, как ремонтировать импульсные блоки питания.Как он объясняет, «существует множество книг и статей о том, как спроектировать импульсный источник питания, но не так много об их ремонте. Поскольку переключаемые источники питания становятся повсеместными в электронных устройствах сегодня, становится гораздо важнее понять, как работают и, что не менее важно, как они терпят неудачу «. Эта статья была первоначально опубликована в audioXpress, январь 2018 г.

Существует множество книг и статей о том, как разработать импульсный источник питания, но не так много статей о том, как их исправить. По мере того, как импульсные источники питания становятся сегодня повсеместным явлением в электронных устройствах, становится все более важным понимать, как они работают, и, что не менее важно, как они выходят из строя.

Вся суть переключателя заключается в том, что он выпрямляет линию питания переменного тока в постоянный ток, а затем прерывает постоянный ток генератором с переменной скважностью на очень высокой частоте, так что можно использовать крошечный понижающий трансформатор. Трансформаторам на высоких частотах не требуются большие сердечники или много обмоток для получения большой мощности, поэтому их можно сделать крошечными и с небольшими затратами. Рабочий цикл генератора можно регулировать с помощью обратной связи, так что регулирование может выполняться без потери мощности в процессе. Таким образом, вы можете получить одновременно хорошее регулирование и хорошую эффективность.

В этой статье речь пойдет о расходных материалах обратного хода с линейным приводом. Существуют и другие преобразователи топологии, которые популярны, когда изоляция линий не требуется, но если вы посмотрите на то, что происходит между входом переменного тока и шинами постоянного тока на электронном оборудовании сегодня, это основная используемая топология, потому что она дает хорошие результаты. эффективность и изоляция линии.

Рисунок 1: Этот образец импульсного источника питания взят из таблицы данных UC2842 и использует общую микросхему ШИМ-контроллера UC2842.(Оригинальная схема любезно предоставлена ​​Texas Instruments)
Как работают коммутаторы
На рис. 1 показан образец импульсного источника питания (любезно предоставлен Texas Instruments). Это взято из таблицы данных UC2842 и использует общую микросхему контроллера PWM UC2842. (Таблицу данных можно найти в разделе «Дополнительные материалы» на веб-сайте audioXpress, ссылку см. В файлах проекта.) Обратите внимание, что эта конструкция, как и обычно, имеет полную изоляцию между первичной и вторичной сторонами схемы.Вы можете провести в голове линию через сердечник трансформатора и оптопару и разбить схему на две электрически изолированные половины. Это важный момент, и вы увидите это почти во всех источниках питания любого размера, поскольку изоляция от линии электропередачи является основной проблемой безопасности.

Электропитание переменного тока отключается от сети и выпрямляется через мостовой выпрямитель DBRIDGE. Выход заряжает большой конденсатор фильтра на первичной стороне CIN, который обеспечивает отфильтрованное (но почти без пульсаций) постоянное напряжение на первичную обмотку трансформатора NP, а также напряжение для запуска микросхемы широтно-импульсной модуляции (ШИМ). через резистор RSTART.

RSTART подает только небольшой ток для запуска устройства, поэтому, как только первый импульс проходит через полевой транзистор (FET), ток из третьей обмотки трансформатора используется для обеспечения питания для запуска генератора. В этом суть NA и DBIAS. Вы можете не увидеть эту третью обмотку, вы можете просто увидеть, что вся рабочая мощность потребляется через резистор сброса большей мощности вместо RSTART. Но использование третьей обмотки значительно повышает эффективность.

Когда генератор ШИМ работает, он посылает постоянные импульсы с выходного контакта. Это включает большой переключающий полевой транзистор QSW, который генерирует импульс тока, проходящего через трансформатор. Когда это происходит, ток индуцируется во вторичной обмотке трансформатора, выпрямляется и фильтруется с помощью DOUT и COUT, а ток течет по выходу.

Поскольку генератор ШИМ работает очень быстро, трансформатор и конденсатор фильтра на вторичной стороне могут быть очень маленькими. Хотя этот предел 2200 мкФ может показаться большим, если генератор работает на частоте 60 кГц, он в тысячу раз эффективнее того же значения на линии 60 Гц.

Рисунок 2: На этой схеме показан типичный небольшой импульсный источник питания, использующий микросхему 3845 PWM. Обратите внимание, что выход Vaux связан с входной землей. Оптоизолятор U2 состоит из двух частей. U3 является эталоном для сравнения линии 5 В.
Регулировка источника питания
Итак, как работает регулирование? Все остальное на вторичной обмотке приводит к включению светодиода в оптоизоляторе, когда выходное напряжение превышает 12 В. UC2842 обеспечивает небольшое количество регулируемых 5 В (сделанных с помощью внутреннего линейного регулятора), и это напряжение на VREF используется для запитать выходной каскад оптоизолятора.Он подает переменное напряжение на вход VFB, чтобы обеспечить обратную связь с UC2842 о том, что напряжение правильное, и немного снизить коэффициент заполнения выходного сигнала.

Оптоизолятор не должен быть очень линейным, чтобы рабочий цикл UC32842 поддерживался на грани, чтобы выходное напряжение всегда было идеальным. Вход ISENSE измеряет падение напряжения на RCS, то есть измеряет ток, потребляемый через этот переключающий полевой транзистор. UC2842 спроектирован так, что если оно превышает 1 В, он отключает схему ШИМ.Итак, это схема защиты по току.

Обычно мы видим резистор и конденсатор, RRT и CCT, подключенные к выводу RT / CT и обеспечивающие постоянную времени для генератора ШИМ. В этом случае мы также усиливаем линейный сигнал ШИМ с помощью транзистора и подаем его на вход ISENSE через CRAMP и IRAMP, чтобы схема была стабильной в течение очень долгих рабочих циклов. Это называется «компенсацией наклона», и способ ее выполнения кратко объясняется в таблице данных TI для микросхемы UC2842, но не в таблицах данных других производителей.

А что насчет другого транзистора с CSS и RSS? Это небольшая схема, которая сужает ширину импульса при первом включении устройства и немного замедляет запуск, чтобы было меньше ударов по компонентам. Теперь вы увидите другие варианты этой базовой схемы.

Вы увидите, что для обеспечения обратной связи используется дополнительная обмотка трансформатора вместо оптоизолятора. Вы увидите, что ИС с ШИМ подключается непосредственно к линии переменного тока, а не с обмоткой NA. Вы увидите несколько вторичных цепей и цепей лома.Но это базовая конструкция, которую вы увидите внутри любого переключателя, поэтому ваша задача — точно выяснить, какие изменения от этой базовой конструкции существуют в вашей схеме.

Рисунок 3: Вот еще один вариант конструкции небольшого импульсного источника питания. Этот коммутатор использует регулировку на шине 5 В, а шина 12 В регулируется только в том смысле, что она отслеживает шину 5 В. Четвертая обмотка питает микросхему ШИМ.
Как определить, что у вас есть
Плохая новость заключается в том, что в большинстве случаев у вас не будет документации для коммутатора.Хорошая новость заключается в том, что большую часть времени коммутатор будет очень близок к образцу схемы из таблицы данных микросхемы ШИМ (см. Рисунок 2). Не всегда и не для расходных материалов более высокого уровня, но в большинстве случаев получение таблицы данных микросхемы скажет вам 90% того, что происходит со схемой.

Похоже, что в подавляющем большинстве более качественных расходных материалов китайского производства используются контроллеры ШИМ серии C2842 / UC2843 / UC3842 / UC3843. Они производятся дюжиной разных компаний, включая Fairchild Semiconductor, ON Semiconductor, TI и STMicroelectronics, и у каждой из этих компаний есть немного разные таблицы данных с немного разными образцами схем.Так что, если вы не видите схему, с которой столкнулись, в таблице данных, получите другую таблицу от другого производителя, и, вероятно, вы ее увидите (см. Рисунок 3).

Fairchild KA7552 обнаруживается в ряде устройств (см. Фото 2). Это был дизайн Samsung, который теперь продается Fairchild с тех пор, как они приобрели производственные мощности и линейку продуктов Samsung. Он отдаленно похож на UC2842, но с другой распиновкой.

Иногда вы увидите ШИМ-контроллер TL594 от ON Semiconductor.Опять же, для этого есть пара других поставщиков, поэтому вам следует проверить несколько таблиц данных. Одна очень популярная ИС, которую вы найдете в устройствах с одним выходом с низким энергопотреблением, — это микросхемы серии TOP242, производимые Power Integrations. Это встроенные генераторы ШИМ на одной подложке с мощным полевым транзистором. Добавьте трансформатор, пару выпрямителей и оптоизолятор, и вы получите полный импульсный блок питания в коробке. Конечно, они часто выходят из строя, но их довольно легко диагностировать.

Однако эти микросхемы имеют десятки вариантов мощности и корпусов, поэтому вы не всегда можете держать их все под рукой.Аналогичное, но менее популярное устройство — MC33374. Многие менее дорогие продукты китайского производства будут использовать управляющую ИС AP3021, и этот чип производится и продается под десятками разных наименований десятками различных компаний в Китае. Документация по нему оставляет желать лучшего, но если вы когда-нибудь столкнетесь с загадочно выглядящим ШИМ-контроллером, где контакт № 6 не используется, скорее всего, это AP3021 или его копия. Таблицы данных на английском языке для этого продукта в лучшем случае скудны, но как только вы получите некоторое представление о распиновке и о том, как она работает, вы сможете понять, что происходит.

Фото 2: Fairchild KA7552 использовался в нескольких устройствах.
Встреча с неожиданностью
Не каждый источник питания представляет собой отдельный импульсный источник питания в коробке. Иногда вы встретите системы с несколькими переключателями в одном корпусе, обеспечивающими несколько выходных напряжений, каждый из которых регулируется. Чаще встречается несколько напряжений на одном трансформаторе с одним выходным напряжением, используемым для контура управления, но для некоторых приложений требуется хорошее регулирование с сильно меняющейся нагрузкой.

Иногда используется второй «всегда включенный» источник питания, который обеспечивает резервное напряжение, используемое для работы процессора, который управляет основным питанием. Это очень распространено для таких вещей, как видеомониторы и компьютеры. Часто этот источник питания находится на небольшой дочерней плате, поскольку он требует хорошей гальванической развязки от остальной электроники, но не требует большой мощности.

Если вы видите повсюду множество маленьких дискретных транзисторов, можно предположить, что они задействованы в системах автоматического отключения, чтобы отключиться в случае высокого или низкого напряжения или тока в одном или нескольких местах.Поиск и устранение неисправностей в этих схемах без руководства может быть настоящим кошмаром, поскольку бывает трудно понять, при каком напряжении срабатывают отдельные части.

Время от времени для аудио или других приложений с низким уровнем шума вы будете видеть линейные регуляторы серии для небольшого дополнительного сглаживания, расположенные после переключения источника питания. Поскольку они могут перегреться, они являются частым источником проблем, но их довольно легко диагностировать, поскольку вы можете видеть, как в них поступает и выходит напряжение.

Устранение проблемы
Если у вас есть документация на блок питания, половина работы сделана за вас.Если нет, то вы знаете основную блок-схему и можете вручную разрабатывать отдельные части внутри каждого блока. Получение таблицы данных для микросхемы PWM скажет вам огромное количество, поскольку большинство схем PWM, а иногда и целые расходные материалы просто скопированы из таблиц данных производителей. Часто микросхема ШИМ имеет несколько источников. Например, общий ШИМ-контроллер 2842 можно приобрести как минимум у четырех разных производителей. У всех есть разные таблицы данных, и если вашей схемы нет в одной, она может быть в другой.

Если питание включается, но сразу ломаются, первое, что нужно сделать, это проверить или заменить все конденсаторы фильтра на вторичной стороне трансформатора. Это может быть вызвано и другими вещами, такими как негерметичный выпрямитель на вторичной обмотке или неисправный резистор в цепи измерения тока, но они встречаются гораздо реже.

Иногда крышки бывают настолько негерметичными, что источник питания запускается без нагрузки, но не работает с какой-либо нагрузкой. Вы склонны винить нагрузку в том, что она потребляет слишком большой ток, но это не всегда нагрузка.Если сомневаетесь, поменяйте колпачки, а затем снимите диагностику оттуда.

Во многих источниках питания используется «пусковой конденсатор» для подачи тока для запуска. Это не показано в приведенном выше примере, но это довольно распространенная конфигурация. Если блок питания работал, был отключен, но не перезапускался вообще, замените пусковой конденсатор. Если документации нет, скорее всего, это будет электролитик от 25 В до 50 В очень небольшого значения (1 мкФ или 2 мкФ), расположенный рядом с микросхемой ШИМ.

Высоковольтный конденсатор (иногда два конденсатора) на первичном источнике питания, который напрямую фильтрует линию, в США редко выходит из строя. Однако в Европе, где линейное напряжение в два раза больше и где используются те же источники питания с несколькими входами, эти конденсаторы часто оказываются неисправными. Европейские поставщики, поведение которых меняется в зависимости от нагрузки, должны сначала проверить их.

Конденсаторы, расположенные рядом с радиаторами или под ними, имеют тенденцию очень быстро перегорать и являются частыми источниками отказов.Фактически, поскольку подавляющее большинство сбоев, с которыми вы сталкиваетесь, связаны с конденсаторами, очень удобно иметь эквивалентный тестер последовательного сопротивления (ESR) для проведения быстрых тестов в цепи. Тем не менее, я часто склонен просто заменять все электролиты сомнительных производителей, даже если они хорошо проходят испытания, просто потому, что мне нужен более длительный срок службы источника питания, чем предполагаемый расчетный срок службы.

Если проблема не в конденсаторе, очень распространенной неисправностью является силовой транзистор или полевой транзистор (см. QSW на рисунке 1).Обычно их можно легко найти по большим отверстиям в плате, где раньше находился полевой транзистор, по всем трем контактам полевого транзистора, имеющим непрерывность между ними, или по очевидным сбоям диодов или резисторов в цепи рядом с полевым транзистором. Если полевой транзистор не «протерт» (это означает, что все три контакта имеют целостность и звуковой сигнал на тестере целостности), возможно, стоит проверить его вне цепи.

Однако, если полевой транзистор «очищен», все, что управляет затвором этого полевого транзистора, вероятно, было разрушено в результате сбоя.Часто это микросхема ШИМ, и хорошо иметь общие микросхемы ШИМ в корзине запчастей.

Хорошее правило состоит в том, что в случае отказа переключающего транзистора или полевого транзистора следует заменить защитный диод на базе или затворе транзистора. Даже если он хорошо проверит, может и не быть. Также необходимо проверить демпфирующий диод DCLAMP. Полевые транзисторы выходят из строя без видимой причины, но чаще всего они выходят из строя из-за перенапряжения (из-за плохих ограничивающих диодов) или перегрузки по току (из-за плохих и протекающих конденсаторов) или высоких температур (из-за плохих разработчиков).

Если эти простые вещи не решают вашу проблему, пора приступить к реальной диагностике. Достаньте измеритель и начните смотреть на контакты микросхемы ШИМ. Вы видите приемлемое входное напряжение на VCC? Вы видите опорное напряжение 5 В от VREF? Вы видите на ISENSE меньше вольт или больше? Осциллятор вообще колеблется? Убедитесь, что входы микросхемы ШИМ исправны, а затем и выходы микросхемы ШИМ. Если у вас есть форма волны на выходном контакте, но у вас нет выхода, обратите внимание на переключающий полевой транзистор или транзистор, демпфирующий диод вокруг него и так далее.Если осциллятор не колеблется, чего ему не хватает?

Точные значения будут варьироваться в зависимости от используемой микросхемы ШИМ, но таблица рекомендуемых рабочих условий в таблице данных микросхемы ШИМ сообщит вам, какими они должны быть.

Правила для конденсаторов
Правило 1: Большинство отказов импульсного источника питания происходит из-за плохих электролитических конденсаторов. Даже отказы полевого транзистора часто являются долгосрочными последствиями первоначальной проблемы с конденсатором.

Правило 2: Никто никогда не ошибся, заменив дешевые бытовые электролитические конденсаторы на промышленные 105C более высокого класса.Это может не решить сиюминутную проблему, но, вероятно, повысит надежность электроснабжения в долгосрочной перспективе. Так что не тратьте много времени на то, чтобы решить, неисправен ли конденсатор, просто замените его. Ваше время стоит больше, чем электролит.

Правило 3. Покупайте конденсаторы у законных поставщиков, таких как Digi-Key, Newark / element14, Allied / RS, Mouser и т. Д. На рынке много поддельных конденсаторов, которые не были поставлены производителем на банке.

Правило 4: Электролитические конденсаторы выходят из строя из-за возраста и плохой инженерной надежности, но когда другие типы конденсаторов выходят из строя, это происходит потому, что их вызвала что-то еще.

Правило 5: Танталовые конденсаторы на самом деле являются электролитическими. Химический состав немного отличается от химического состава алюминиевых электролитических колпачков, но долговременная надежность и проблемы, связанные с температурой, такие же. Обратите внимание, что более распространенные танталы с «сухими пробками» (те, что покрыты эпоксидной смолой) имеют тенденцию выходить из строя, и это может облегчить их идентификацию в случае отказа. К сожалению, это также означает, что отказ может привести к серьезному сопутствующему ущербу.

Изменение
Не бойтесь работать на оборудовании со встроенными коммутационными блоками.Чтобы разобраться в том, как они работают, и в наиболее распространенных режимах отказов может потребоваться много времени, но как только вы это сделаете, их, как правило, нетрудно исправить.

Если вы хотите научиться конструировать коммутационные блоки (а вам следует это сделать, потому что это тоже полезный навык), позвольте мне порекомендовать «Замечание по применению линейной технологии 25: Импульсные регуляторы для поэтов», написанное 30 лет назад великий Джим Уильямс. В то время переключение источников питания было причудливой новой вещью, с которой дизайнеры только начинали разбираться, а доступные ИС были гораздо более ограниченными и грубыми, поэтому описание Уильямса пришлось детализировать.Это прекрасный документ, доступный во многих местах в Интернете. B

Файлы проекта
Чтобы загрузить техническое описание Texas Instruments UC2842, посетите audioXpress-Supplementary-Material

Resource
Дж. Уильямс, «Примечание 25 по применению линейной технологии: переключение регуляторов для поэтов», сентябрь 1987 г.

Эта статья была первоначально опубликована в audioXpress, январь 2018 г.

Об авторе
Скотт Дорси имеет степень в области электротехники, во время которой он работал в сфере радиовещания и звукозаписи.Проработав несколько лет в крупной студии, он устроился на работу к подрядчику по защите. Это оставило ему время для записи живых концертов акустической музыки, а также для разработки и создания аудиоустройств для личного использования по контракту с несколькими производителями и импортерами аудио. Скотт регулярно пишет в нескольких аудиожурналах. Он публикует обзоры оборудования и проекты DIY с середины 1980-х годов. Он, вероятно, наиболее известен в аудио-сообществе своими модернизированными электронными проектами недорогих микрофонов Oktava, AKG и Feilo.

Услуги по ремонту и техническому обслуживанию промышленных источников питания

Быстрые ссылки: Почему глобальные электронные услуги | Процесс ремонта блока питания | Типы источников питания | Свяжитесь с нами сегодня

Любому предприятию, использующему промышленные блоки питания, необходима надежная ремонтная служба. Когда прекращается подача электроэнергии, компании сталкиваются с неожиданными простоями, которые могут сорвать проекты и снизить прибыль. Global Electronic Services готова предоставить эффективные услуги по ремонту любых промышленных источников питания, чтобы ваш бизнес мог свести к минимуму влияние на работу при выходе из строя оборудования.

ЗАПРОСИТЬ ЦЕНУ

Почему выбирают глобальные электронные услуги для ремонта источников питания?

У вашего предприятия есть сотни вариантов, когда речь идет о ремонте промышленного оборудования. Итак, что делает Global Electronic Services правильным выбором и как мы можем предоставить услугу, которая превосходит остальные? Вот семь основных преимуществ, которые следует учитывать:

1. Внутреннее обслуживание

Многие производители электроники сокращают время и передают часть своей работы другим предприятиям.Они делают это, чтобы сократить расходы, и такая практика сопряжена с серьезными недостатками для конечного потребителя. Плохая коммуникация и отсутствие прозрачности затрудняют понимание того, кто на самом деле занимается ремонтом вашей компании, и часто бывает сложно получить актуальную информацию о том, как идет ремонт.

Global Electronic Services выполняет весь ремонт на месте, поэтому ваша компания может быть уверена, что весь ремонт источников питания выполняется нашими опытными специалистами по ремонту. Это также означает, что у нас есть тысячи общих компонентов, готовых к работе, и нам не нужно ждать поступления различных компонентов, как это делают многие другие компании.У нас даже есть запасы устаревших компонентов, что позволяет нам ремонтировать блоки питания, которые у других компаний просто нет для обслуживания.

2. Гарантия в процессе эксплуатации

Когда ваша компания ремонтирует блок питания, вы ожидаете, что ремонт будет чем-то большим, чем просто пластырем. Многие ремонтные службы в срочном порядке выполняют ремонт блока питания, но не дают никаких гарантий, что проделанная ими работа задержится. Это означает, что многие компании в конечном итоге отправляют одно и то же устройство обратно в ремонт или преждевременно заменяют устройство, срок службы которого может быть долгим, если будет выполнен качественный ремонт.

Чтобы повысить доверие клиентов к качеству наших услуг, мы предлагаем 18-месячную гарантию на ремонт. Это означает, что даже если ваша компания использует блок питания в качестве резервного, он все равно покрывается в течение 18 месяцев, начиная с момента ввода в эксплуатацию.

3. Быстрый возврат

Хотя ремонт промышленных источников питания может быть глубоким и сложным процессом, это не повод заставлять вашу компанию дольше ждать ремонта оборудования. Благодаря нашему оптимизированному процессу и квалифицированным специалистам по ремонту, Global Electronic Services имеет стандартное время выполнения работ от одного до пяти дней.

Когда вы разговариваете с представителем или запрашиваете расценки с подробностями вашей проблемы с источником питания, мы можем дать оценку того, сколько времени займет ремонт, чтобы ваш бизнес мог соответствующим образом спланировать работу.

4. Срочная служба

Многие ремонтные службы просто не в состоянии предоставить срочные услуги. Global Electronic Services готова взять на себя экстренный ремонт, а также отремонтировать и отправить блок питания вашей компании в течение 24–48 часов, если возникнет острая необходимость.

Имея по одной ремонтной мастерской на каждом берегу, Global Electronic Services может быстрее вернуть ваш недавно отремонтированный источник питания к вашему бизнесу. Лучшая часть срочного сервиса заключается в том, что мы предлагаем его бесплатно. Мы понимаем, что такое аварийное электроснабжение, и не пользуемся ситуацией в вашей компании.

5. Гарантия цены

Когда блок питания выходит из строя, вашей компании необходимо найти баланс между соблюдением бюджета и поиском поставщика качественного ремонта.Global Electronic Services избавляет от головной боли при поиске благодаря нашей гарантии цены. Мы превзойдем любую предложенную вами цену на 10%, давая вам уверенность в том, что ваша компания получает лучшую ценность в отрасли.

6. Испытания при полной нагрузке

Некоторые компании используют свои гарантии как способ пропустить важный процесс проверки ремонта. Когда это происходит, компании вынуждены отправлять в ремонт одно и то же оборудование несколько раз, потому что оно не проходит тщательные испытания.Хотя ремонт может быть бесплатным, разочарование и простои, вызванные этим, того не стоят.

Global Electronic Services объединяет нашу лучшую в отрасли гарантию с тестированием при полной нагрузке в процессе ремонта, помогая свести к минимуму вероятность того, что вам понадобится использовать гарантию после завершения ремонта.

7. Отслеживание процессов

Незнание того, что происходит в процессе ремонта промышленного источника питания, может вызвать серьезное разочарование и затруднить планирование ремонта источника питания вашей компании.Вот почему мы предлагаем отслеживание процессов через наш клиентский портал. Просто войдите в систему и отслеживайте, где находится каждый заказ в процессе ремонта. Вы также можете просматривать историю заказов, оплачивать заказы и подтверждать расценки через удобный портал.

Процесс ремонта промышленных источников питания

В

Global Electronic Services предусмотрен пятиэтапный процесс ремонта, призванный обеспечить квалифицированный ремонт с оптимизацией эффективности. Когда ваша компания отправляет блок питания в ремонт, он проходит следующий процесс:

1.Квитанция

При получении запроса ремонт немедленно регистрируется в нашей системе с собственным уникальным штрих-кодом для отслеживания. Техник завершает первоначальную оценку ремонта и составляет список деталей, необходимых для завершения ремонта. Используя этот список запчастей и оценку, мы создадим для вашей компании ценовое предложение в течение 24 часов и отправим его на утверждение посредством телефонного звонка и подтверждения по электронной почте.

2. Оценка

Как только ваша компания утвердит предложение, мы назначаем специалиста по блоку питания.Техник разбирает устройство и начинает поиск неисправностей оборудования — это включает в себя поиск электронных подписей и определение их функциональности, а также их производительности.

3. Ремонт и проверка

Используя информацию, полученную на предыдущем шаге, технический специалист выполняет испытание под настоящей нагрузкой и запускает моделирование, чтобы определить условия, при которых устройство выходит из строя. Это дает необходимую информацию для завершения ремонта.

После того, как техник завершит ремонт, дальнейшие испытания в условиях нагрузки гарантируют оптимальную работу устройства.

4. Заключительная подготовка

Некоторые компании проводят ремонт, но не предпринимают дополнительных действий для обеспечения полной готовности устройства к работе после того, как клиент получит его. Это может привести к тому, что ваша компания получит устройство, которое функционирует, но требует дополнительной очистки, прежде чем его можно будет снова ввести в эксплуатацию.

В Global Electronic Service мы делаем все возможное. После завершения ремонта и проверки установка отправляется на станцию ​​очистки. Техники используют чистящие средства, разработанные для электроники, в том числе обезжириватели и индикаторы масла.Некоторые виды ремонта требуют выдержки в сушильном помещении, чтобы влага полностью испарилась. Этот этап очистки гарантирует, что устройство будет готово к установке в тот момент, когда ваша компания получит его.

5. Гарантия качества и доставка

Наша опытная команда по обеспечению качества проводит еще один раунд проверок, чтобы убедиться, что блок питания полностью исправен и готов к повторному использованию. Как только это будет подтверждено, ремонт готов к отправке.

Мы понимаем важность правильной упаковки и принимаем многочисленные меры для обеспечения безопасной доставки.Мы определяем потребности в упаковке в зависимости от размера, формы и веса отремонтированного изделия. При необходимости защиты ремонта мы предоставляем индивидуальную упаковку для отгрузки.

После того, как мы отправим блок питания обратно в вашу компанию, мы создадим подробный счет, который доступен для просмотра на безопасном портале для клиентов.

Типы источников питания

Блок питания — это устройство, которое преобразует электрическую мощность в правильную частоту, ток и напряжение конкретной цепи нагрузки.Источником питания может быть переменный ток (от электричества) или постоянный ток (от батарей или солнечных батарей). Хотя источники питания обычно преобразуют один тип электроэнергии в другой, они также могут преобразовывать другие формы энергии, такие как солнечная или механическая, в электрическую энергию. Давайте посмотрим на некоторые из наиболее распространенных типов источников питания:

1. Источник переменного тока с переменным током

Источник переменного тока позволяет пользователям изменять выходное напряжение и, в некоторых случаях, ток.В источниках питания переменного тока используются трансформаторы или автотрансформаторы для изменения напряжения и тока переменного тока в переменный, при этом частота источника питания остается неизменной.

2. Частотные преобразователи

Когда необходимо изменить частоту переменного тока, преобразователь частоты является подходящим типом источника питания. В этих источниках питания могут использоваться такие устройства, как мотор-генератор или выпрямительно-инверторный агрегат. В последнем случае выпрямитель преобразует мощность переменного тока в мощность постоянного тока, а инвертор затем изменяет мощность постоянного тока обратно на мощность переменного тока с другой частотой.

3. Изолирующие трансформаторы

Изолирующие трансформаторы передают электроэнергию от источника переменного тока к устройству или части оборудования, сохраняя при этом включенное устройство изолированным от источника питания. Они используются, когда необходимо согласование импеданса, и обеспечивают наиболее эффективную передачу мощности между каскадами.

4. Нерегулируемый линейный источник питания

Нерегулируемые линейные источники питания обеспечивают простое преобразование переменного тока в постоянный. В их конструкцию входит:

  • Понижающий трансформатор
  • Выпрямитель
  • Конденсатор фильтра
  • Резистор кровотока

Первым шагом в этом источнике питания является изменение сетевого напряжения трансформатором до необходимого уровня переменного напряжения.Полупериодный или двухполупериодный выпрямитель, использующий диоды, затем преобразует пониженное переменное напряжение в постоянное. Конденсаторы фильтра сглаживают возникающий постоянный ток. К конденсатору может быть подключен резистор утечки, а может и не быть его в качестве дополнительного уровня защиты.

Преимущества нерегулируемых линейных источников питания включают надежность и простоту. К недостаткам можно отнести изменение выходного напряжения и конструкцию, которая может выводить только одно напряжение и ток.

5. Источник питания с линейной регулировкой

Источники питания с линейной регулировкой преобразуют переменный ток в постоянный.Процесс преобразования такой же, как и с нерегулируемым источником питания, но с добавлением транзисторной схемы вместо резистора утечки. Эта схема регулятора позволяет источнику питания преобразовывать основное переменное напряжение в стабильное постоянное напряжение, которое идеально подходит для устройств, которым требуется стабильное и постоянное питание.

Эти блоки питания более дорогие, большие и менее энергоэффективные, чем нерегулируемые линейные блоки питания. Они имеют тенденцию терять значительное количество энергии из-за рассеивания мощности, поэтому их может потребоваться использовать вместе с радиатором с регулятором на интегральной схеме (IC).

6. Импульсный регулируемый источник питания

Импульсные регулируемые источники питания или импульсные источники питания (SMPS) доступны в конфигурациях AC-to-DC или DC-to-DC. В них используется сложный высокочастотный метод переключения с широтно-импульсной модуляцией и обратной связью для регулирования выхода. Эти источники питания включают и выключают переключающий транзистор для создания прерываемого постоянного напряжения. Это напряжение проходит через выпрямитель, создавая конечный желаемый выход постоянного тока, который фильтруется перед тем, как источник питания передает его на нагрузку.

Импульсные источники питания обладают преимуществом большей эффективности, чем линейные источники, а также создают значительные электрические и звуковые помехи.

7. Источник питания с регулируемой пульсацией

Этот тип источника питания является обновлением нерегулируемых линейных источников питания. Он основан на нерегулируемом источнике питания и имеет транзисторную схему в области насыщения, которая работает для поддержания желаемого напряжения путем передачи мощности постоянного тока на конденсатор. Источники с регулируемой пульсацией используются в приложениях, где пульсации вызывают проблемы, и они очень эффективны по сравнению с нерегулируемыми источниками.

8. Регулируемые источники питания

Регулируемый или регулируемый источник питания позволяет пользователю непрерывно регулировать выходное напряжение. Это полезно при тестировании проектов, чтобы убедиться, что размещение деталей соответствует схемам. Эти источники питания основаны на линейно регулируемых источниках питания, но модифицированы переменным резистором. Резистор позволяет источнику питания обеспечивать напряжение от нуля до максимально допустимого значения.

9. Аккумуляторные батареи и солнечные источники питания

Солнечные панели и батареи обеспечивают питание постоянного тока, но эту мощность необходимо фильтровать, чтобы не оставалось пульсирующей ряби.После фильтрации микросхемы регуляторов напряжения могут регулировать подачу напряжения до необходимого уровня. Если пользователю необходимо увеличить напряжение, они могут использовать транзисторы для усиления напряжения питания.

10. Преобразователи постоянного тока в постоянный

Когда пользователю необходимо повысить или понизить напряжение постоянного тока, преобразователь постоянного тока в постоянный является подходящим источником питания. Они бывают трех возможных типов:

  • Электрохимия
  • Электромеханический
  • Полупроводник

Полупроводниковые преобразователи являются наиболее распространенными и также бывают различных типов, включая:

  • Двухтактный
  • Бак
  • Повышение
  • Повышение мощности

Преобразователи постоянного тока в постоянный позволяют пользователям создавать разные уровни постоянного тока, используя один источник, вместо того, чтобы использовать несколько источников переменного тока в постоянный для питания устройства.

ЗАПРОСИТЬ ЦЕНУ

11. Источники питания постоянного тока в переменный ток

Этот тип источника питания также известен как инвертор мощности. Поскольку напряжение постоянного тока часто слишком низкое для питания устройств переменного тока, источники питания постоянного тока обычно используются в качестве резервного источника питания в случае сбоя питания. Источник питания этого типа будет принимать энергию, хранящуюся в батарее или элементе, и преобразовывать ее в напряжение переменного тока, подходящее для питания рассматриваемого устройства.

Если вашему бизнесу требуется ремонт блока питания, доверьтесь Global Electronic Services.Имея большой опыт работы в электронной промышленности, мы предлагаем непревзойденное обслуживание клиентов и высококвалифицированные ремонтные работы. Global Electronic Services гордится тем, что уровень возврата клиентов превышает 98%, и мы приглашаем вашу компанию выяснить, почему.

Чтобы узнать больше о наших услугах или начать процесс ремонта, позвоните по телефону 977-249-1701 или запросите ценовое предложение в Интернете.

Дополнительные ресурсы:

Ремонт источников питания — Продажа, ремонт и калибровка испытательного оборудования TesCom


TesCom рада объявить о добавлении услуг по ремонту источников питания к нашему набору услуг по ремонту электронных хранилищ.Полупроводники, телекоммуникации, медицинское оборудование, управление технологическими процессами и робототехника — это лишь некоторые из типов источников питания, которые мы ремонтируем на дому. Наши сервисные специалисты могут качественно отремонтировать электроснабжение от десятков производителей.

Если у вас есть какие-либо вопросы о блоке питания, который необходимо обслуживать, позвоните по телефону 800-888-1978 или отправьте запрос по адресу [email protected]

Отремонтировать, отремонтировать или заменить?

Ремонт
Во время ремонта блоков питания мы обнаруживаем, что большинство поступающих импульсных блоков питания попадают в эту категорию.Наши технические специалисты изучат ваши поставки и определят проблемные области. Они найдут дефектные компоненты и заменят их точными совпадениями. После ремонта блока питания наши специалисты проверит его на соответствие оригинальным спецификациям производителя. Затем наш процесс ремонта источника питания обеспечивает работу вашего источника питания в условиях полной нагрузки. Каждый блок питания выходит с нашего завода полностью протестированным и работоспособным.

Восстановить
Из-за долговечности многих импульсных источников питания некоторым из них более 10 лет.В этих случаях рекомендуется перейти от ремонта источника питания к его ремонту. Это поможет вам избежать проблем в будущем, как в течение гарантийного срока, так и вне его. Неисправные компоненты, а также стареющие компоненты заменяются. Стоимость ремонта немного выше, чем цена ремонта. Однако мы предлагаем полную годовую гарантию на восстановленные расходные материалы.

Заменить
Если ремонт источника питания невозможен, иногда мы можем заменить ваше устройство в зависимости от его выходного напряжения и физических размеров.Наш технический персонал поможет вам определить, подойдет ли вам запасной расходный материал. Подберем оптимальный вариант для вашей организации.

Хотите получить чистую прибыль?

Заполните «Форму запроса предложения», и мы ответим вам в течение 24 часов. Если у вас есть вопросы, свяжитесь с нами по телефону 800-888-1978

.

Найдите блок питания по производителю или номеру модели:

Щелкните здесь, если вы хотите выполнить поиск по номеру модели

Щелкните здесь, если вы хотите выполнить поиск по названию производителя

TesCom является полноправным членом Ассоциации производителей источников энергии.

Устранение неисправностей и ремонт источников питания

Здравствуйте, ребята, надеюсь, у вас все отлично. В сегодняшнем руководстве мы рассмотрим устранение неисправностей и ремонт блока питания . Источник питания — это электронные приборы, используемые для подачи электроэнергии на подключенную нагрузку. Обычно он преобразует одну категорию электрической энергии в другие формы энергии, а также другие типы энергии, такие как механическая, химическая и т. Д., В электрическую энергию.

Существует множество типов источников питания в зависимости от их использования и схем, таких как источник питания переменного тока, источник питания постоянного тока, преобразователь переменного тока в постоянный, регуляторы и т.д. если в поставке возникает какая-либо неисправность, как ее устранить. Итак, приступим к поиску и устранению неисправностей и ремонту блоков питания .

Устранение неисправностей и ремонт источников питания
  • Устранение неисправностей тип логического мышления объединяется с подробной информацией о любой электрической схеме или операции любой сети для обнаружения и устранения ошибки.
  • Для устранения неполадок есть 3 шага: анализ, планирование и измерение.
  • Например, на рисунке ниже, обозначенном как (a) , правильно работающий источник питания постоянного тока показан блоком с известным входным сигналом и точным выходным напряжением.
  • На рисунке обозначено как (b) Источник постоянного тока обозначен как с входом, так и с искаженным выходом.

Анализ:

  • Шаг i st для устранения неисправностей любой неисправной схемы заключается в изучении проблемы, которая включает в себя поиск индикации и устранение как можно большего числа причин.
  • Если мы видим на рисунке (b) , показанном выше, то выход источника постоянного тока не соответствует надлежащему напряжению постоянного тока. Это указание не объясняет точную причину этой проблемы.
  • Однако в других условиях конкретная индикация может указывать на заданную область, где наиболее вероятна ошибка.
  • Пункт i st , который вы должны сделать при изучении ошибки, — это попытаться устранить любые очевидные причины.
  • В нормальном состоянии вы убедитесь, что входная клемма подключена к источнику питания и предохранитель работает правильно.
  • В то время как для системы, в которой аккумулятор обеспечивает питание, аккумулятор должен работать правильно.
  • При проверке входной мощности вы также используете свой разум, чтобы найти вероятные ошибки, такие как устойчивость к повреждениям, отсоединение провода, ослабление соединительного провода или перегоревший предохранитель.
  • Но будьте очень осторожны при наблюдении за цепью, это может вызвать поражение электрическим током или ожоги.
  • При нерегулярном повреждении схема может некоторое время работать правильно, а затем повреждаться из-за нагрева.
  • По закону вы всегда должны проводить сенсорную проверку как часть фазы анализа, прежде чем продолжить.

Планирование

    • На этом этапе вы решаете, как исправить ошибку. Существует 3 возможных метода устранения неполадок большинства цепей. Сначала начните со стороны входа в случае подачи постоянного тока, анализируйте от вторичной обмотки трансформатора от входного напряжения и переходите к выходу, пока не найдете и не получите искаженное значение.
    • Когда вы находите нулевое значение напряжения, вы указали ошибку на часть схемы между последней точкой тестирования, где напряжение было нормальным, и текущим местом тестирования.
    • Во всех методах поиска и устранения неисправностей вы должны определить предполагаемое напряжение в каждом месте, чтобы определить неправильный расчет, когда вы его увидите.
  • На втором этапе начните с выходного терминала схемы и двигайтесь к входу. Найдите напряжение в каждой точке, пока не получите точное значение.
  • На этом этапе вы разделили проблему на часть схемы между последним местом тестирования и местом недавнего тестирования, где напряжение является точным.
    • На третьем этапе используйте технику разделения половин и инициируйте в середине схемы. Если этот расчет показывает точное напряжение, вы узнаете, что схема работает правильно от входной стороны до этого места тестирования.
    • Показывает, что ошибки происходят между текущим местом тестирования и выходной клеммой, поэтому инициируйте определение напряжения в направлении выходных клемм.
    • Если расчеты в средней точке схемы показывают нулевое напряжение напряжения ошибки, вы можете обнаружить, что ошибки — это выходы между входом и точкой тестирования.
    • Итак, приступим к поиску напряжения от точки тестирования до входа.
  • Для демонстрации предположим, что мы применяем метод половинного расщепления с помощью осциллографа.

Измерение

  • На приведенном ниже рисунке метод разделения половин объясняется с расчетами, представляющими конкретную ошибку в этом состоянии, неисправность — это конденсатор фильтра.

  • На рисунке вы можете видеть, что контрольная точка TP2 обеспечивает выход двухполупериодного выпрямителя, который указывает, что и трансформатор, и выпрямитель работают правильно.
  • Эти расчеты также показывают, что фильтрующий конденсатор представляет собой разомкнутую цепь, подтвержденную при двухполупериодном напряжении TP3.
  • Если схема фильтра работает правильно, вы найдете значение постоянного напряжения в точках TP2 и TP3.
  • При коротком замыкании фильтрующего конденсатора во всех точках тестирования будет нулевое напряжение, так как предохранитель поврежден.
  • Короткое замыкание в любой точке схемы очень сложно отделить, если в схеме есть предохранитель, тогда оно будет повреждено, если короткое замыкание произойдет в любой точке схемы.
  • Для ситуации, описанной на рисунке выше, метод половинного разделения потребовал 2 вычисления для разделения ошибки на открытый конденсатор фильтра.
  • Если у вас был ток от вторичной обмотки трансформатора, он имеет 2 значения, а если вы инициировали с конечного выхода, у вас также есть 3 расчета, как показано на рисунке ниже.

Анализ неисправностей
  • В некоторых ситуациях после разделения ошибочной части на определенную схему может быть обязательным разделить проблему на один элемент в схеме.
  • В этом случае вы должны использовать логические подходы и вашу информацию о показаниях, вызванных повреждением специальных компонентов.
  • Некоторые характерные составляющие катастроф и признаки, которые они вызывают, объясняются ниже.
Эффект открытого диода в полуволновом выпрямителе
  • На рисунке ниже показан однополупериодный выпрямитель с фильтром с открытым диодом.

  • Результирующая индикация — 0 выходного напряжения, как указано.Это очевидно, поскольку открытый диод приостанавливает прохождение тока от вторичной обмотки трансформатора к фильтру и выходному сопротивлению, и поэтому ток равен нулю.
  • Другими ошибками, которые вызывают аналогичную индикацию в этой схеме, являются обрыв обмотки трансформатора, нулевое напряжение на входе и открытый предохранитель.
Эффект разомкнутого диода в полнополупериодном выпрямителе
  • На рисунке ниже показана схема выпрямителя с центральным отводом и фильтром.

  • Если какой-либо диод в схеме разомкнут, то пульсации напряжения на частоте шестьдесят герц будут вдвое выше, чем на частоте в двадцать герц.
  • Другая ошибка, вызывающая аналогичную индикацию, — это обрыв вторичной обмотки трансформатора.
  • Причина увеличения пульсаций напряжения на частоте шестьдесят герц, чем на частоте один двадцать герц, заключается в следующем.
  • В приведенной выше схеме, если один диод разомкнут, ток через сопротивление нагрузки R L будет в течение полупериода входа.
  • Для остальных полупериодов входного сигнала в этом цикле нет тока из-за разомкнутого диода.
  • Следствием этого является полуволновое выпрямление, как показано на рисунке выше, которое генерирует более высокие пульсации напряжения с частотой шестьдесят герц.
  • Мостовой двухполупериодный выпрямитель показан ниже в этой схеме. Открытый диод также генерирует аналогичный индикатор, как и в схеме с центральным отводом, мостовой выпрямитель показан ниже.

  • Открытый диод останавливает ток через сопротивление нагрузки на полупериод входного сигнала.
  • Благодаря этому выпрямляется только полупериод, который генерирует в два раза большее пульсирующее напряжение на частоте шестьдесят герц, чем обычно генерируется на частоте один двадцать герц.
Влияние неисправного конденсатора фильтра
  • На рисунке ниже описаны три типа ошибок конденсатора фильтра.

  • Обрыв: Если фильтрующий конденсатор в схеме двухполупериодного выпрямителя разомкнут, то на выходе схемы будет двухполупериодное выпрямленное напряжение.
  • Короткое замыкание: Если фильтрующий конденсатор закорочен, выход будет нулевым. Из-за короткого замыкания конденсатора выйдет из строя предохранитель.
  • Если предохранитель используется неправильно, то из-за короткого замыкания конденсатора все диоды в схеме перегорают из-за большого значения тока и выход равен нулю.
  • Утечка:
  • Конденсатор фильтра утечки аналогичен конденсатору с параллельным резистором утечки.
  • Резистор утечки уменьшает постоянную времени RC, и конденсатор разряжается очень быстро, как обычно.
  • Это увеличивает пульсации напряжения на выходных клеммах схемы, но эти нарушения возникают очень редко.

Итак, друзья, это полный пост об устранении неисправностей и ремонте источника питания, если у вас есть какие-либо вопросы по этому сообщению, спрашивайте в комментариях. Увидимся в следующем интересном посте, хорошего дня.

Автор: Генри
http://www.theengineeringknowledge.com

Я профессиональный инженер и закончил известный инженерный университет, а также имею опыт работы инженером в различных известных отраслях.Я также пишу технический контент, мое хобби — изучать новые вещи и делиться ими с миром. Через эту платформу я также делюсь своими профессиональными и техническими знаниями со студентами инженерных специальностей.

Сообщение навигации

Диагностика, ремонт и улучшение блока питания ATX

В этой статье мы рассмотрим конструкцию простого блока питания ATX и покажем вам, каких компонентов обычно не хватает в дешевых китайских блоках питания из-за желания производителя сделать его ровным. более дешевый.Скажем несколько слов об их надежности и наиболее распространенных причинах их выхода из строя. Также мы продемонстрируем, как диагностировать их возможные неисправности и измерять напряжение под нагрузкой и без нее.

Для иллюстрации мы будем использовать эту модель блока питания Oktet ATX-400W.

  • Мощность: 400 Вт
  • Форм-фактор ATX
  • Рейтинг эффективности: 70%
  • Охлаждение: вентилятор 80 мм
  • Модуль коррекции коэффициента мощности: активен
  • Стабилизация напряжения: нет
  • Защита от перегрузки: нет
  • Защита от короткого замыкания: есть


Состав:


Основная причина поломки и правильный расчет мощности для блоков питания ATX

Из-за ошибок в расчете мощности данный БП выдержал короткое замыкание под нагрузкой.Изоляция на внешних проводах нагрузки расплавилась, а некоторые провода полностью сгорели.

Почему это произошло?
Заявленная мощность блока питания составляет 400 Вт, но реальная выходная мощность такого дешёвого БП в лучшем случае составляет около 250 Вт.

Современные компьютеры потребляют большую часть потребляемой энергии по шине 12 В. Это рейка, которая питает почти все в вашей машине. Если вы посмотрите на шину 12 В / 15 А этого БП и переведите ее в ватты, то получите его истинную мощность 180 Вт (12 В * 15 А = 180 Вт).

Вот вывод: будьте очень внимательны, когда смотрите на наклейки на блоке питания, который собираетесь купить, и сосредоточьтесь на цифре 12-вольтовой шины.

Вот пример качественного блока питания на 400 Вт с правильными характеристиками мощности. В этом случае вы легко можете увидеть, сколько реальной мощности вы получаете на шине 12 В — настоящие 275 Вт.

Тем не менее, этот блок питания обеспечивает правильное напряжение на всех шинах (12 В, 5 В, 3,3 В), поэтому суть в следующем: такие блоки питания достаточно прочные, но не слишком надежные, поскольку они не предлагают либо стабилизация напряжения, либо защита от перегрузки.Часто в таких блоках питания отсутствуют некоторые компоненты, и они могут выйти из строя, в том числе вывести из строя вашу материнскую плату или процессор.

Как проверить выходное напряжение

Вы можете использовать готовые решения из Китая — например, этот цифровой тестер — чтобы узнать, сколько мощности на самом деле дает вам блок питания.

Также подойдет обычный вольтметр. Прежде всего, вам нужно включить блок питания, а для этого сначала необходимо найти резервный контакт.Вы можете увидеть это в основном разъеме, который подает питание на материнскую плату: это зеленый провод.

Для запуска БП соедините этот контакт с черным проводом (массой). Сделать это можно скрепкой или пинцетом. Напряжение на внешних разъемах питания появится только после включения блока питания — это можно заметить по вращению вентилятора охлаждения.

После запуска БП проверьте показания напряжения на всех шинах.
Если все цифры в норме, подключите эквивалент нагрузки.
В этой роли вы можете использовать 12-вольтовую лампочку мощностью около 100 Вт.

Но есть план получше: разобрать блок питания и визуально осмотреть его компоненты, прежде чем подключать эквивалент нагрузки. Нам нужно убедиться, что дроссели не сгорели, а высоковольтные конденсаторы не вздулись.

Выверните четыре винта, снимите верхнюю крышку, осторожно возьмите печатную плату и осмотрите ее. Визуально внутренних повреждений нет, конденсаторы целы, плата чистая.

Дизайн простых блоков питания ATX

Этот блок питания соответствует типовой конструкции для блоков питания ATX. Входное напряжение 220 В поступает от разъема питания к плате — на которой отсутствует входной сетевой фильтр, но есть пустое место для его пайки, что говорит об очередной попытке китайского производителя сэкономить на кажущихся «ненужными» компонентах .

После этого напряжение проходит на диодный (выпрямительный) мост, и мы видим два накопительных конденсатора по 470 мкФ каждый, что является минимальной емкостью для заявленной выходной мощности.

На первом радиаторе есть два полупроводниковых ключа питания и транзистор резервного генератора напряжения с несколькими выходами. За ним находится разделительный трансформатор и резервный трансформатор.

На другом радиаторе вы можете увидеть низковольтную часть блока питания, диоды Шоттки, затем дроссельную катушку для +5 и +12 Вольт, а также дроссель для 3,3-вольтовой шины, силовой кабели для внешних разъемов и силовой кабель для охлаждающего вентилятора.

Устранение дефектов и доработка блока питания

Проверили диоды в выпрямительном мосту на пробой, но работают исправно.Теперь первое, что нужно заменить, — это провода, используемые для подачи питания на другие компоненты компьютера. Кабель питания материнской платы не поврежден.

Теперь мы заменили провода и добавили некоторые улучшения в этот блок питания. В выходной части мы добавили три конденсатора по 1500 мкФ, так как запаса конденсаторов на 1000 мкФ было недостаточно для заявленной емкости блока питания. Также мы добавили дроссель и фильтрующие конденсаторы для входного напряжения сети 220 В. В высоковольтной части нам также пришлось заменить штатные конденсаторы на высококачественные, по 560 мкФ каждый, потому что тестирование конденсаторов, припаянных к плате, показало, что есть только два китайских конденсатора с фактической емкостью 250 мкФ каждый. — вместо двух конденсаторов по 470 мкФ каждый, как рекомендовано для таких конфигураций.

После всех доработок устройство стоит протестировать.

Подключите входное напряжение 220 В, проверьте напряжение ожидания на разъеме питания материнской платы, соедините этот контакт с заземляющим кабелем и включите питание. Блок питания включается, и вентилятор охлаждения вращается.

Проверим напряжение для каждой шины — 5, 12 и 3,3 В.

  • + 5-вольтовая рейка — 5В
  • + рейка 12 вольт — 11.97В
  • Шина 3,3 В — 3,38 В

Как подключить лампу накаливания для проверки блока питания под нагрузкой

Есть одна вещь, на которую мы хотели бы обратить ваше внимание при использовании мощной лампы накаливания в качестве эквивалента нагрузки.

Лампа накаливания является нелинейным элементом, и ее сопротивление изменяется по мере нагревания нити накала. В холодное время года у него очень низкое сопротивление — например, 0,3 Ом. Вот почему, когда вы подключаете его к шине 12 В в качестве эквивалента нагрузки, срабатывает элемент защиты от перегрузки по току.

Но если вы нагреете нить накала внутри лампочки более низким напряжением, например 5 В, а затем подключите ее к шине 12 В, защита БП не сработает, так как нить накала нагрелась и ее сопротивление увеличилось. Теперь давайте попробуем измерить сопротивление нити накала сразу после отключения питания — оно превышает 4 Ом! По мере того, как лампочка остывает, ее сопротивление уменьшается, и вы увидите около 0,2 Ом при комнатной температуре.

С холодной колбой сопротивлением 0.2 Ом, импульс тока будет около 60 ампер (закон Ома — I = В / Ом), что превышает допустимый ток для 12-вольтовой шины импульсного блока питания ATX. С нагретой лампочкой ток в шине 12 В будет только между 2 и 5 А.

А теперь попробуем подключить дополнительную нагрузку — в виде этой лампочки, и защита БП не должна срабатывать. Сначала подключите лампочку к 5-вольтовой шине — она ​​только светится, но не светит. Теперь сменим его на шину 12 вольт — свет станет ярче.

Следующим этапом является снятие показаний напряжения с каждой шины под нагрузкой.

  • Падение напряжения на шине 12 В до 11,72 В
  • Шина 5 В — до 4,98 В
  • Шина 3 В — до 3,31 В

Все показания находятся в допустимых пределах.

Если блок питания работает стабильно, пора его собрать.
Не забудьте надеть на кабели защитный зажим, чтобы избежать поломки корпуса, что может произойти при повреждении их изоляции.

После этого следует снова проверить источник питания с нагрузкой на шину 12 В. Теперь, когда он работает правильно, вы даже можете использовать его для сборки недорогого ПК.

Теперь, когда эксперимент окончен, будем надеяться, что ваш ремонт всегда будет успешным, и все ваши устройства будут работать должным образом очень долго.


Подобных советов по восстановлению данных, подобранных специально для вас:



Дата: Теги: Повреждено, как исправить, Как восстановить, Обновление, Windows
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *